This paper describes computational analysis of the thermal ratcheting of solder-bonded layered plates subjected to cyclic thermal loading following solder-bonding. Finite element computations of Si/solder/Cu layered plates are performed by taking into account mechanical ratcheting of the copper as well as temperature-dependent creep of the solder. A sophisticated non-linear kinematic hardening model is used for appropriately representing mechanical ratcheting of the copper; a temperature-dependent power-law creep model is assumed for the solder. It is shown that the layered plates can exhibit either the cyclic recovery or the cyclic growth of deflection depending on the extent of plastic yielding in the copper layer, and that the cyclic recovery always occurs if the copper layer is elastic. It is also demonstrated that the cyclic recovery of deflection can be much greater than the static recovery of deflection at a constant temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.