ATP-sensitive K+(KATP) channels are therapeutic targets for several diseases, including angina, hypertension, and diabetes. This is because stimulation of KATP channels is thought to produce vasorelaxation and myocardial protection against ischemia, whereas inhibition facilitates insulin secretion. It is well known that native KATP channels are inhibited by ATP and sulfonylurea (SU) compounds and stimulated by nucleotide diphosphates and K+channel-opening drugs (KCOs). Although these characteristics can be shared with KATP channels in different tissues, differences in properties among pancreatic, cardiac, and vascular smooth muscle (VSM) cells do exist in terms of the actions produced by such regulators. Recent molecular biology and electrophysiological studies have provided useful information toward the better understanding of KATPchannels. For example, native KATPchannels appear to be a complex of a regulatory protein containing the SU-binding site [sulfonylurea receptor (SUR)] and an inward-rectifying K+ channel (Kir) serving as a pore-forming subunit. Three isoforms of SUR (SUR1, SUR2A, and SUR2B) have been cloned and found to have two nucleotide-binding folds (NBFs). It seems that these NBFs play an essential role in conferring the MgADP and KCO sensitivity to the channel, whereas the Kir channel subunit itself possesses the ATP-sensing mechanism as an intrinsic property. The molecular structure of KATPchannels is thought to be a heteromultimeric (tetrameric) assembly of these complexes: Kir6.2 with SUR1 (SUR1/Kir6.2, pancreatic type), Kir6.2 with SUR2A (SUR2A/Kir6.2, cardiac type), and Kir6.1 with SUR2B (SUR2B/Kir6.1, VSM type) [i.e., (SUR/Kir6. x)4]. It remains to be determined what are the molecular connections between the SUR and Kir subunits that enable this unique complex to work as a functional KATP channel.
Diabetes mellitus (DM) is an independent risk of atrial fibrillation. However, its arrhythmogenic substrates remain unclear. This study sought to examine the precise propagation and the spatiotemporal dispersion of the action potential (AP) in the diabetic atrium. DM was induced by streptozotocin (65 mg/kg) in 8-wk-old male Wister rats. Optical mapping and histological analysis were performed in the right atrium (RA) from control (n = 26) and DM (n = 27) rats after 16 wk. Rate-dependent alterations of conduction velocity (CV) and its heterogeneity and the spatial distribution of AP were measured in RA using optical mapping. The duration of atrial tachyarrhythmia (AT) induced by rapid atrial stimulation was longer in DM (2.4 ± 0.6 vs. 0.9 ± 0.3 s, P < 0.05). CV was decreased, and its heterogeneity was greater in DM than control. Average action potential duration of 80% repolarization (APD(80)) at pacing cycle length (PCL) of 200 ms from four areas within the RA was prolonged (53 ± 2 vs. 40 ± 3 ms, P < 0.01), and the coefficient of variation of APD(80) was greater in DM than control (0.20 ± 0.02 vs. 0.15 ± 0.01%, P < 0.05). The ratio of APD(80) at PCL shorter than 200 ms to that at 200 ms was smaller (P < 0.001), and the incidence of APD alternans was higher in DM than control (100 vs. 0%, P < 0.001). Interstitial fibrosis was greater and connexin 40 expression was lower in DM than control. The remodeling of the diabetic atrium was characterized as follows: greater vulnerability to AT, increased conduction slowing and its heterogeneity, the prolongation of APD, the increase in spatial dispersion and frequency-dependent shortening of APD, and increased incidence of APD alternans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.