Thin-film transistors (TFTs) were fabricated using amorphous indium gallium zinc oxide (a-IGZO) channels by rf-magnetron sputtering at room temperature. The conductivity of the a-IGZO films was controlled from ∼10−3to10−6Scm−1 by varying the mixing ratio of sputtering gases, O2∕(O2+Ar), from ∼3.1% to 3.7%. The top-gate-type TFTs operated in n-type enhancement mode with a field-effect mobility of 12cm2V−1s−1, an on-off current ratio of ∼108, and a subthreshold gate voltage swing of 0.2Vdecade−1. It is demonstrated that a-IGZO is an appropriate semiconductor material to produce high-mobility TFTs at low temperatures applicable to flexible substrates by a production-compatible means.
Thin film transistors (TFTs) using polycrystalline tin oxides (SnO–SnO2) channels were formed on glass by a conventional sputtering method and subsequent annealing treatments. SnO-channel TFTs showed p-type operation with on/off current ratios of ∼102 and field-effect mobilities of 0.24 cm2 V−1 s−1. Incorporation of excess oxygen to SnO channel layers did not generate holes but did electrons, which in turn led to n-type operation. This result is explained by transformation to a local SnO2-like structure and finally to SnO2. We propose a simple method to fabricate complimentary circuits by simultaneous selective formation of p- and n-channel TFTs.
High-performance and excellent-uniformity thin-film transistors (TFTs) having bottom-gate structures are fabricated using an amorphous indium-gallium-zinc-oxide (IGZO) film and an amorphous-silicon dioxide film as the channel layer and the gate insulator layer, respectively. All of the 94 TFTs fabricated with an area 1 cm 2 show almost identical transfer characteristics: the average saturation mobility is 14.6 cm 2 /(V-sec) with a small standard deviation of 0.11 cm 2 /(V-sec). A five-stage ring-oscillator composed of these TFTs operates at 410 kHz at an input voltage of 18 V. Pixel-driving circuits based on these TFTs are also fabricated with organic light-emitting diodes (OLED) which are monolithically integrated on the same substrate. It is demonstrated that light emission from the OLED cells can be switched and modulated by a 120-Hz ac signal input. Amorphous-IGZO-based TFTs are prominent candidates for building blocks of large-area OLED-display electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.