Mice that could be highly repopulated with human hepatocytes would have many potential uses in drug development and research applications. The best available model of liver humanization, the uroplasminogen-activator transgenic model, has major practical limitations. To provide a broadly useful hepatic xenorepopulation system, we generated severely immunodeficient, fumarylacetoacetate hydrolase (Fah)-deficient mice. After pretreatment with a urokinaseexpressing adenovirus, these animals could be highly engrafted (up to 90%) with human hepatocytes from multiple sources, including liver biopsies. Furthermore, human cells could be serially transplanted from primary donors and repopulate the liver for at least four sequential rounds. The expanded cells displayed typical human drug metabolism. This system provides a robust platform to produce high-quality human hepatocytes for tissue culture. It may also be useful for testing the toxicity of drug metabolites and for evaluating pathogens dependent on human liver cells for replication.The liver is the principal site for the metabolism of xenobiotic compounds, including medical drugs. Because many hepatic enzymes are species specific, it is necessary to evaluate the metabolism of candidate pharmaceuticals using cultured primary human hepatocytes 1,2 . Today, hepatocytes are isolated primarily from cadaveric organs and then shipped to the location where testing will be performed. The condition (viability and state of differentiation) of hepatocytes from cadaveric sources is highly variable, and many cell preparations are of marginal quality. The availability of high-quality human hepatocytes is further hampered by the fact that they cannot be substantially expanded in tissue culture 3,4 . Hepatocytes from readily available mammalian species, such as the mouse, are not suitable for drug testing because they have a different complement of metabolic enzymes and
Metachromatic leukodystrophy (MLD) is a demyelinating lysosomal storage disorder for which new treatments are urgently needed. We previously showed that transplantation of gene-corrected hematopoietic stem progenitor cells (HSPCs) in presymptomatic myeloablated MLD mice prevented disease manifestations. Here we show that HSC gene therapy can reverse neurological deficits and neuropathological damage in affected mice, thus correcting an overt neurological disease. The efficacy of gene therapy was dependent on and proportional to arylsulfatase A (ARSA) overexpression in the microglia progeny of transplanted HSPCs. We demonstrate a widespread enzyme distribution from these cells through the CNS and a robust cross-correction of neurons and glia in vivo. Conversely, a peripheral source of enzyme, established by transplanting ARSAoverexpressing hepatocytes from transgenic donors, failed to effectively deliver the enzyme to the CNS. These results indicate that the recruitment of gene-modified, enzyme-overexpressing microglia makes the enzyme bioavailable to the brain and makes therapeutic efficacy and disease correction attainable. Overall, our data provide a strong rationale for implementing HSPC gene therapy in MLD patients.
GFP cell-marking provided direct evidence of the BM cells participation in liver regeneration after hepatectomy, where the majority was committed to sinusoidal endothelial cells probably through endothelial progenitor cell mobilization.
Previously, we reported a system to enrich mouse fetal hepatic progenitor cells (HPCs) by forming cell aggregates. In this study, we sorted two cell populations, CD49f ؉ Thy1 ؊ CD45 ؊ cells (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.