As the pathogenesis of arterial thrombosis often includes platelet thrombus formation (PTF), antiplatelet agents are commonly used for the prevention of thromboembolic events. Here, using a novel microchip flow-chamber system we developed to quantitatively analyze the PTF process, we evaluated the pharmacological efficacies of antiplatelet agents under different arterial shear rates. Hirudin-anticoagulated whole blood was perfused over a collagen-coated microchip at shear rates of 1000, 1500, and 2000s(-1), and PTF in the absence and presence of various antiplatelet agents was observed microscopically and quantified by measuring flow-pressure changes. The onset of PTF was measured as T(10) (time to reach 10 kPa), and AUC(10) (area under the flow pressure curve for the first 10 min) was calculated to quantify the overall stability of the formed thrombus. Aspirin and AR-C66096 (P2Y(12)-antagonist) at high concentrations (50 μM and 1000 nM, respectively) prolonged T(10) only modestly (AR-C66096>aspirin), but effectively decreased AUC(10), resulting in unstable PTF at all examined shear rates. With dual inhibition using both aspirin (25 μM) and ARC-66096 (250 nM), AUC(10) was drastically reduced. Nearly complete suppression of AUC(10) was also observed with abciximab (2 μg ml(-1)) and beraprost (PGI(2)-analog; 4 nM). Although OS-1 (GPIbα-antagonist; 100 nM) prevented complete capillary occlusion, significant amounts of microscopic thrombi were observed on the collagen surface. In contrast to abciximab and beraprost, OS-1 differentially affected PTF under higher shear conditions. Our novel analytical system is capable of distinguishing the pharmacological effects of various antiplatelet agents under physiological shear rates, suggesting that this system may aid in the determination of the appropriate type and dose of antiplatelet agent in the clinical setting.
High residual platelet aggregability and circulating platelet-monocyte aggregates in patients administered aspirin and clopidogrel are associated with ischaemic vascular events. To determine the relevance of these factors with residual thrombogenicity, we measured platelet thrombus formation using a microchip-based flow-chamber system in cardiac patients receiving aspirin and/or clopidogrel, and evaluated its correlation with agonist-inducible platelet aggregation and platelet-monocyte aggregates. Platelet thrombus formation was analysed by measuring flow pressure changes due to the occlusion of micro-capillaries and was quantified by calculating AUC 10 (area under the flow pressure curve. The growth and stability of platelet thrombi that formed inside microchips at shear rates of 1000, 1500, and 2000 s⁻¹ were markedly reduced in patients receiving aspirin and/or thienopyridine compared to healthy controls (n=33). AUC 10 values of aspirin therapy patients (n=20) were significantly lower and higher than those of healthy controls and dual antiplatelet therapy patients (n=19), respectively, and showed relatively good correlations with collagen-induced platelet aggregation and platelet-monocyte aggregates at 1000 and 1500 s⁻¹ (rs >0.59, p<0.01). In contrast, AUC 10 in dual antiplatelet therapy patients was significantly correlated with ADP-induced platelet aggregation at all examined shear rates (rs >0.59, p<0.01), but did not correlate with collagen-induced aggregation. Aspirin monotherapy patients with high residual platelet thrombogenicity also exhibited significant elevations in both collagen-induced platelet aggregation and platelet-monocyte aggregates. Our results, although preliminary, suggest that residual platelet thrombogenicity in aspirin-treated patients is associated with either collagen-induced platelet aggregation or circulating platelet-monocyte aggregates, but it is predominantly dependent on ADP-induced platelet aggregation in patients receiving dual antiplatelet therapy.
NPM is a major nucleolar multifunctional protein involved in ribosome biogenesis, centrosome duplication, cell-cycle progression, apoptosis, cell differentiation, and sensing cellular stress. Alarmins are endogenous molecules released from activated cells and/or dying cells, which activate the immune system and cause severe damage to cells and tissue organs. In the present work, stimulation of cells with the alarmin-inducible molecule endotoxin, for 16 h, resulted in NPM release into the culture supernatants of RAW264.7 cells, a murine macrophage cell line. Extracellular NPM was detected in the ascites of the CLP model. NPM was translocated into the cytoplasm from the nucleus in LPS -stimulated RAW264.7 cells; furthermore, NPM was detected in the cytosols of infiltrated macrophages in the CLP model. rNPM induced release of proinflammatory cytokines, TNF-alpha, IL-6, and MCP-1, from RAW264.7 cells and increased the expression level of ICAM-1 in HUVECs. NPM induced the phosphorylation of MAPKs in RAW264.7 cells. Our data indicate that NPM may have potent biological activities that contribute to systemic inflammation. Further investigations of the role of NPM may lead to new therapies for patients with septic shock or other inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.