This paper provides a broad review of the state of the art in Lissajous curve techniques, with particular regard to rotating machinery. Lissajous figure is a subject too wide-ranging to allow a comprehensive coverage of all of the areas associated with this field to be undertaken, and it is not the authors' intention to do so. However, a general overview of the broader issues of Lissajous curve is provided, it tells us about the phase difference between the two signals and the ratio of their frequencies, and several of the various methodologies are discussed. The experimental technique used Oscilloscopic with Rotor Rig; the display is usually a CRT or LCD panel which is laid out with both horizontal and vertical reference lines we can demonstrate the waveform images on an oscilloscope. The objective of this paper is to provide the reader with an insight into recent developments in the field of Lissajous curve, with particular regard to rotating machines. The subject of it in rotating machinery is vast, including the diagnosis of items such as rotating shafts, gears and pumps.
There is a growing tendency today to extract information about the prognostic parameters based on system analysis through various diagnostic techniques to assess the health of the plant or equipment. Vibration monitoring helps in reducing the machine down time. A vibration signature measured at the external surface of machine or at any other suitable place contains a good amount of information to reveal the running condition of the machine. Considering the importance of vibration monitoring in the rotating machinery fault diagnostics, it has been applied in this paper. Effects of modal parameters like natural frequency, mode shapes, and damping, misalignments have been studied. Balancing is usually an expensive and laborious procedure and a balancing system would be beneficial for motor engine and power generation application. In this research, there have been identified unbalance parameters that exist in rotating machinery and develop a finite-element model of rotating dynamics system to create a mathematical model of the system from the test data and subsequently obtaining the unbalanced parameters. During this study, the raw data obtained from the experimental results (Smart Office software) are curve fitted by theoretical data regenerated from simulating it using finite element (ANSYS 12) model for comparisons. The experimental analysis used thus far is called Modal Testing, a well-known and widely used technique in research and industry to obtain the Modal and Dynamic response properties of structures. The technique has recently been applied to rotating structures and some research papers been published, however, the full implementation of Modal Testing in active structures and the implications are not fully understood and are therefore in need of much further and more in-depth investigations. The aim is to find a system identification methodology using the analytical/computational techniques and update the model using experimental techniques already established for passive structures but to active rotating structures, which subsequently help to carry out health monitoring as well as further design and development in rotating machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.