SUMMARYCharacteristics of the single-effect mechanical vapour-compression (MVC) are analysed as a function of the system design and operating parameters. The analysis focuses on prediction of the specific power consumption for the vapour compressor and the specific heat transfer areas for the evaporator/condenser unit and the plate-type feed preheaters. The mathematical model includes material and energy balance equations as well as a set of correlations for evaluation of the thermophysical properties and the heat transfer coefficients. The correlations are dependent on the transport properties of the flowing streams, i.e. temperature, concentration, and velocity. In addition, the model considers the effects of the boiling point elevation and the pressure losses in the demister. Results show decrease in the specific power consumption and the specific heat transfer area of the evaporator/condenser at higher top brine temperatures. On the other hand, the specific power consumption decreases at low-temperature differences between the boiling brine and steam condensate, while the specific heat transfer area increases. Model predictions are found consistent with the available industrial data. Finally, comparison of the performance of the MVC system and the single-effect thermal vapour compression (TVC) is made as a function of design and operating parameters. Although, the results show comparable performance, choice between the two systems should take into consideration other operational parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.