Abstract:The purpose of the present experimental work is to investigate the performance (1 ton) refrigeration system using nano-refrigerant. Nano-refrigerant is alumina (ɣ-Al 2 O 3 ) nanopartcal with size (20-30) nm is dispersed into R-134a with volume fraction 0.01% and 0.02%. The experimental test rig consists of horizontal double tube counter flow heat exchanger fabricated of copper. The nano-refrigerant is evaporated inside the inner tube because of the heat gain from hot water passing in the annulus surrounding the inner tube. The experimental results indicate, when increasing the volume concentration of Al 2 O 3 refrigerant by 0.01% and 0.02%, the heat transfer coefficient increases by 0.54% to 1.1%. The thermal conductivity increases by 11.5% and 14.2%, respectively, while the coefficient of performance increases by 3.33% to 12%, respectively. The heat transfer rate in the refrigeration side is enhancement about 6.7% to 21.4% compared with conventional refrigerant, and the power consumption by compressor is decreased by nearly 1.6% and 3.3%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.