BackgroundHox genes impart segment identity to body structures along the anterior-posterior axis and are crucial for the proper development of all organisms. Multiple regulatory elements, best defined in Drosophila melanogaster, ensure that Hox expression patterns follow the spatial and temporal colinearity reflected in their tight genomic organization. However, the precise mechanisms that regulate colinear patterns of Hox gene expression remain unclear, especially in higher vertebrates where it is not fully determined how the distinct activation domains of the tightly clustered Hox genes are defined independently of each other. Here, we report the identification of a large number of novel cis-elements at mammalian Hox clusters that can help in regulating their precise expression pattern.ResultsWe have identified DNA elements at all four murine Hox clusters that show poor association with histone H3 in chromatin immunoprecipitation (ChIP)-chip tiling arrays. The majority of these elements lie in the intergenic regions segregating adjacent Hox genes; we demonstrate that they possess efficient enhancer-blocking activity in mammalian cells. Further, we find that these histone-free intergenic regions bear GA repeat motifs and associate with the vertebrate homolog of the GAGA binding boundary factor. This suggests that they can act as GAGA factor-dependent chromatin boundaries that create independent domains, insulating each Hox gene from the influence of neighboring regulatory elements.ConclusionsOur results reveal a large number of potential regulatory elements throughout the murine Hox clusters. We further demarcate the precise location of several novel cis-elements bearing chromatin boundary activity that appear to segregate successive Hox genes. This reflects a pattern reminiscent of the organization of homeotic genes in Drosophila, where such regulatory elements have been characterized. Our findings thus provide new insights into the regulatory processes and evolutionarily conserved epigenetic mechanisms that control homeotic gene expression.
The genome of eukaryotes is organized into structural units of chromatin loops. This higher order organization is supported by a nuclear skeleton called the nuclear matrix. The genomic DNA associated with the nuclear matrix is called the matrix associated region (MAR). Only a few genome-wide screens have been attempted, although many studies have characterized locusspecific MAR DNA sequences. In this study, a MAR DNA library was prepared from the Drosophila melanogaster Meigen (Diptera: Drosophilidae) genome. One of the sequences identified as a MAR was from a long terminal repeat region of ‘roo’ retrotransposon (roo MAR). Sequence analysis of roo MAR showed its distribution across the D. melanogaster genome. roo MAR also showed high sequence similarity with a previously identified MAR in Drosophila, namely the ‘gypsy’ retrotransposon. Analysis of the genes flanking roo MAR insertions in the Drosophila genome showed that genes were co-ordinately expressed. The results from the present study in D. melanogaster suggest this sequence plays an important role in genome organization and function. The findings point to an evolutionary role of retrotransposons in shaping the genomic architecture of eukaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.