Background: Conventional treatment resistance remains a significant problem in cancer care. Cancer stem cells might play a major role in treatment resistance, and as a result, basic stem cell pathways are instrumental in cancer. Sonic Hedgehog signaling has not been widely studied in oral cancer, and being one of the major cancer stem cell pathways, targeting it with natural compounds could open many opportunities in the treatment scenario. Objective: The objective of the study was to identify the role of various natural compounds as an anti-cancer agent for oral cancer by targeting the Hedgehog signaling pathway. Methods: The selection of natural compounds were identified through literature review and NPACT database. The protein (3M1N and 3MXW) and ligand molecules were retrieved through the PDB and PubChem database. To carry out docking experiments, the AutoDock 4.2 program was used to study the interaction between the identified protein and ligand. Results: Among the 13 identified natural compounds, the top three were selected based on their binding energy. The higher the binding energy on the negative side, the better the interaction formed between protein and ligand. The natural compound showing best results with 3M1N protein were Butein, Biochanin-A, and Curcumin, whereas, with 3MXW, Zerumbone, Curcumin, and Butein were identified. Conclusion: The identified natural compounds have shown better binding energy to bind the Hh ligands in the absence/presence of a known Sonic Hedgehog inhibitor. Based on the results, natural compounds can be utilized in the current treatment modality for oral cancer either as an individual anti-cancer agent or in combination with the known Sonic Hedgehog inhibitor to curb the increasing incidence rate. Yet, in-vitro evidence in lab setup is required.
Stem cell biology has come of an age. During the past few years, CSCs have been increasingly found in many malignancies. Tumor relapse and metastasis remains major hurdle for improving overall cancer survival. CSCs basically have slow growth rates and are resistant to chemotherapy and/or radiotherapy. Thus, new treatment strategies targeting CSCs can be developed. Various stem cell maintenance pathways such as Notch, Wnt and Hedgehog are found to be activated in the various cancers stem cells. Hedgehog signaling is most active during the embryonic development and aberrant reactivation of the pathway in adult tissue can lead to development of cancer. A variety of cancers such as brain, gastrointestinal, lung, breast and prostate cancer shows possible signs of activation of Hedgehog pathway. Targeted inhibition of Hedgehog signaling can be found effective in the treatment and prevention of many types of human cancers. Hence, the discovery and synthesis of specific Hedgehog pathway inhibitors may have significant clinical implications in novel cancer therapeutics. In this review, we have discussed Hedgehog signaling and its activation in different types of cancers and the development of its targeted therapies.
Oral cancer is a heterogeneous, aggressive, and complex entity. Current major treatment options for the disease are surgery, chemo, and/or radiotherapy either alone or in combination with each other. Each treatment method has its own limitations such as a significant journey with deformities and a protracted rehabilitation process leading to loss of self-esteem, loss of tolerance, and therapeutic side effects. Conventional therapies are frequently experienced with regimen resistance and recurrence attributed to the cancer stem cells (CSCs). Given that CSCs exert their tumorigenesis by affecting several cellular and molecular targets and pathways an improved understanding of CSCs' actions is required. Hence, more research is recommended to fully understand the fundamental mechanisms driving CSC-mediated treatment resistance. Despite the difficulties and disagreements surrounding the removal of CSCs from solid tumors, a great amount of knowledge has been derived from the characterization of CSCs. Various efforts have been made to identify the CSCs using several cell surface markers. In the current review, we will discuss numerous cell surface markers such as CD44, ALDH1, EPCAM, CD24, CD133, CD271, CD90, and Cripto-1 for identifying and isolating CSCs from primary oral squamous cell carcinoma (OSCC). Further, a spectrum of embryonic signaling pathways has been thought to be the main culprit of CSCs' active state in cancers, resulting in conventional therapeutic resistance. Hence, we discuss the functional and molecular bases of several signaling pathways such as the Wnt/beta;-catenin, Notch, Hedgehog, and Hippo pathways and their associations with disease aggressiveness. Moreover, numerous inhibitors targeting the above mentioned signaling pathways have already been identified and some of them are already undergoing clinical trials. Hence, the present review encapsulates the characterization and effectiveness of the prospective potential targeted therapies for eradicating CSCs in oral cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.