RTV ASD dissolution is governed by a competition between the dissolution rate and the rate of phase separation in the hydrated ASD matrix. LLPS was observed for ASDs where the drug release was polymer controlled and only ASDs that remained miscible during the initial phase of dissolution led to LLPS. Techniques such as fluorescence spectroscopy, confocal imaging and SEM were useful in understanding the phase behavior of ASDs upon hydration and dissolution and were helpful in elucidating the mechanism of generation of amorphous nanodroplets.
Drug-polymer miscibility is considered to be a prerequisite to achieve an optimally performing amorphous solid dispersion (ASD). Unfortunately, it can be challenging to evaluate drug-polymer miscibility experimentally. The aim of this study was to investigate the miscibility of ASDs of itraconazole (ITZ) and hydroxypropyl methylcellulose (HPMC) using a variety of analytical approaches. The phase behavior of ITZ-HPMC films prepared by solvent evaporation was studied before and after heating. Conventional methodology for miscibility determination, that is, differential scanning calorimetry (DSC), was used in conjunction with emerging analytical techniques, such as fluorescence spectroscopy, fluorescence imaging, and atomic force microscopy coupled with nanoscale infrared spectroscopy and nanothermal analysis (AFM-nanoIR-nanoTA). DSC results showed a single glass transition event for systems with 10% to 50% drug loading, suggesting that the ASDs were miscible, whereas phase separation was observed for all of the films based on the other techniques. The AFM-coupled techniques indicated that the phase separation occurred at the submicron scale. When the films were heated, it was observed that the ASD components underwent mixing. The results provide new insights into the phase behavior of itraconazole-HPMC dispersions and suggest that the emerging analytical techniques discussed herein are promising for the characterization of miscibility and microstructure in drug-polymer systems. The observed differences in the phase behavior in films prepared by solvent evaporation before and after heating also have implications for processing routes and suggest that spray drying/solvent evaporation and hot melt extrusion/melt mixing can result in ASDs with varying extent of miscibility between the drug and the polymer.
The purpose of this study was to develop a novel fluorescence technique employing environment-sensitive fluorescent probes to study phase separation kinetics in hydrated matrices of amorphous solid dispersions (ASDs) following storage at high humidity and during dissolution. The initial miscibility of the ASDs was confirmed using infrared (IR) spectroscopy and differential scanning calorimetry (DSC). Fluorescence spectroscopy, as an independent primary technique, was used together with conventional confirmatory techniques including DSC, X-ray diffraction (XRD), fluorescence microscopy, and IR spectroscopy to study phase separation phenomena. By monitoring the emission characteristics of the environment-sensitive fluorescent probes, it was possible to successfully monitor amorphous-amorphous phase separation (AAPS) as a function of time in probucol-poly(vinylpyrrolidone) (PVP) and ritonavir-PVP ASDs after exposure to water. In contrast, a ritonavir-hydroxypropylmethylcellulose acetate succinate (HPMCAS) ASD, did not show AAPS and was used as a control to demonstrate the capability of the newly developed fluorescence method to differentiate systems that showed no phase separation following exposure to water versus those that did. The results from the fluorescence studies were in good agreement with results obtained using various other complementary techniques. Thus, fluorescence spectroscopy can be utilized as a fast and efficient tool to detect and monitor the kinetics of phase transformations in amorphous solid dispersions during hydration and will help provide mechanistic insight into the stability and dissolution behavior of amorphous solid dispersions.
High drug load amorphous solid dispersions (ASDs) have been a challenge to formulate partially because drug release is inhibited at high drug loads. The maximum drug load prior to inhibition of release has been termed the limit of congruency (LoC) and has been most widely studied for copovidone (PVPVA)-based ASDs. The terminology was derived from the observation that below LoC, the polymer controlled the kinetics and the drug and the polymer released congruently, while above LoC, the release rates diverged and were impaired. Recent studies show a correlation between the LoC value and drug−polymer interaction strength, where a lower LoC was observed for systems with stronger interactions. The aim of this study was to investigate the causality between drug−PVPVA interaction strength and LoC. Four chemical analogues with diverse abilities to interact with PVPVA were used as model drugs. The distribution of the polymer between the dilute aqueous phase and the insoluble nanoparticles containing drug was studied with solution nuclear magnetic resonance spectroscopy and traditional separation techniques to understand the thermodynamics of the systems in a dilute environment. Polymer diffusion to and from ASD particles suspended in aqueous solution was monitored for drug loads above the LoC to investigate the thermodynamic driving force for polymer release. The surface composition of ASD compacts before and after exposure to buffer was studied with Fourier transform infrared spectroscopy to capture potential kinetic barriers to release. It was found that ASD compacts with drug loads above the LoC formed an insoluble barrier on the surface that was in pseudo-equilibrium with the aqueous phase and prevented further release of drugs and polymers during dissolution. The insoluble barrier contained a substantial amount of the polymer for the strongly interacting drug−polymer systems. In contrast, a negligible amount was found for the weakly interacting systems. This observation provides an explanation for the ability of strongly interacting systems to form an insoluble barrier at lower drug loads. The study highlights the importance of thermodynamic and kinetic factors on the dissolution behavior of ASDs and provides a potential framework for maximizing the drug load in ASDs.
The fluorescence-based methodologies proved to be sensitive and rapid in detecting phase separation, even at the nanoscale, in the ITZ-HPMC ASDs. Fluorescence-based methods thus show promise for miscibility evaluation of spray-dried ASDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.