Apoptotic cell clearance by dendritic cells (DCs) plays a crucial role in the maintenance of self-tolerance. In spleen, CD8␣؉ DCs are thought to be responsible for this phenomenon by phagocytosing circulating apoptotic cells. However, as CD8␣ ؉ DCs are believed to be predominantly localized in the T cell zone, it remains unclear how these DCs phagocytose blood-borne apoptotic cells accumulated in the marginal zone (MZ). In this study, we identified a subpopulation of CD8␣ ؉ DCs responsible for tolerance induction to cell-associated Ags. Among splenic CD8␣؉ DCs, the CD103 ؉ ,CD207 ؉ subset was preferentially localized in the MZ and dominantly phagocytosed blood-borne apoptotic cells. After phagocytosis of apoptotic cells, this DC subset migrated into the T cell zone for cross-presentation of cell-associated Ags. Stimulation of TLRs induced the disappearance of this DC subset.
Consequently, CD8␣؉ DCs neither phagocytosed injected apoptotic cells nor presented cell-associated Ags in mice treated with TLR ligands. Transient ablation of this DC subset by cytochrome c injection resulted in a failure of tolerance induction to cell-associated Ags, indicating that this DC subset is essential for tolerance induction by apoptotic cell clearance.
Macrophages have a wide variety of activities and it is largely unknown how the diverse phenotypes of macrophages contribute to pathological conditions in the different types of tissue injury in vivo. In this study we established a novel animal model of acute respiratory distress syndrome caused by the dysfunction of alveolar epithelial type II (AE2) cells and examined the roles of alveolar macrophages in the acute lung injury. The human diphtheria toxin (DT) receptor (DTR), heparin-binding epidermal growth factor-like growth factor (HB-EGF), was expressed under the control of the lysozyme M (LysM) gene promoter in the mice. When DT was administrated to the mice they suffered from acute lung injury and died within 4 days. Immunohistochemical examination revealed that AE2 cells as well as alveolar macrophages were deleted via apoptosis in the mice treated with DT. Consistent with the deletion of AE2 cells, the amount of surfactant proteins in bronchoalveolar lavage fluid was greatly reduced in the DT-treated transgenic mice. When bone marrow from wild-type mice was transplanted into irradiated LysM-DTR mice, the alveolar macrophages became resistant to DT but the mice still suffered from acute lung injury by DT administration. Compared with the mice in which both AE2 cells and macrophages were deleted by DT administration, the DT-treated LysM-DTR mice with DT-resistant macrophages showed less severe lung injury with a reduced amount of hepatocyte growth factor in bronchoalveolar lavage fluid. These results indicate that macrophages play a protective role in noninflammatory lung injury caused by the selective ablation of AE2 cells.
Lipoxygenase was purified homogeneously from cups of Pleurotus ostreatus by Sephacryl S-400 HR gel filtration, Dyematrex Green A affinity, and DEAE-Toyopearl 650M ion-exchange chromatographies. The molecular weight of the enzyme was estimated to be 67,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 66,000 by gel filtration; the isoelectric point was pH 5.1. The optimum pH and temperature of the enzymatic activity were 8.0 and 25 degrees C, respectively. The enzyme contained non-heme iron, and a thiol group seemed to be involved in its activity. The K(m), V(max), and k(cat) values of the enzyme for linoleic acid were 0.13 mM, 23.4 micromol.min(-1).mg(-1), and 25.7 s(-1), respectively. The enzyme showed high specificity toward linoleic acid. When linoleic acid was incubated with the enzyme, 13-hydroperoxy-9Z,11E-octadecadienoic acid was found to be the main oxidative product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.