The behaviors of cellulose chains and cellulose mini-crystal in oil-in-water emulsions were studied by molecular dynamics simulations to investigate the coating states and the structural features of cellulose in these emulsions. In oil-in-water emulsion, dispersed cellulose chains gradually assemble during the progress of the simulation, eventually surrounding the octane droplet. In case of a cellulose mini-crystal, the cellulose chain at the corner of the crystal first contacts with the octane droplet through its hydrophobic surface. The other cellulose chains along the crystal plane then gradually move toward the octane molecules. In both emulsions, the cellulose was found to interact with both water and octane surfaces with specific conformations that allow the CH groups of the glucose rings to contact with octane molecules, while the OH groups of these rings contact with water molecules to form hydrogen bonds. The cellulose chains on the octane droplet also contact with each other through lateral hydrogen bonding between chains. These interactions stabilize the emulsion formed by cellulose molecules as surfactants.
Many important biological solutes possess not only polar and hydrogen-bonding functionalities but also weakly hydrating, or hydrophobic, surfaces. While the aggregation of these hydrophobic surfaces has been shown to play an important role in the aggregation of individual chains of cellulose, it is not known whether the water structuring imposed by these hydrophobic surfaces more closely resembles that associated with small hydrophobic solutes like methane and fats or more closely resembles that associated with extended hydrophobic surfaces like mica or waxy planes. By using molecular dynamics simulations to characterize the water molecule orientations over different regions of the 100 surface of cellulose in contact with water, it was found that the hydrophobic strips of the cellulose crystal are sufficiently narrow that they hydrate like a fatty acid chain, rather than like a more extended surface, suggesting that their aggregation would be dominated by entropy rather than enthalpy.
Three independently developed molecular mechanics force fields for carbohydrates have been used to simulate a suite of small molecule analogs of cellulose for which crystal structures have been reported, as a test to determine which might be best for simulations of cellulose itself. Such evaluation is necessary since the reported cellulose crystal structure is not stable in molecular dynamics simulations with any available force field. The present simulations found that all three resulted in small deviations from the reported crystal structures, but that all were reasonably accurate and none was clearly superior to the others for the entire suite of structures examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.