A role of IL-18 in the induction of gastric lesions by water immersion and restraint stress (WRS) was investigated. When wild-type BALB/c mice were exposed to WRS, levels of IL-18 in the serum and stomach increased rapidly with the development of acute gastric lesions. In IL-18-deficient mice [IL-18 knockout (KO) mice] similarly exposed to WRS, no gastric lesions were observed, but the administration of IL-18 before exposure to WRS resulted in the induction of WRS-induced gastric lesions. WRS enhanced gastric histidine decarboxylase (HDC) activity with concomitant increases in gastric histamine content. In IL-18 KO mice, the WRS-induced elevation of gastric HDC activity and histamine levels was much less than that in wild-type mice, but it was augmented by prior administration of IL-18. Treatment of wild-type mice with cimetidine, a histamine H2 receptor antagonist, inhibited the formation of WRS-induced gastric lesions with no effect on the induction of gastric IL-18 by WRS. Levels of corticosterone, one of the stress indicators, were lower in IL-18 KO mice than in wild-type mice. The glucocorticoid receptor antagonist mifepristone had no effect on gastric IL-18 and histamine levels but aggravated the stress-induced gastric lesions, indicating that corticosterone was not involved in the IL-18-mediated formation of stress-induced gastric lesions. These results indicate that IL-18 is involved in the induction of gastric lesions by WRS through augmentation of HDC activity and production of histamine in the stomach.
Interleukin-18 (IL-18) is an inflammatory cytokine that has been linked to energy homeostasis and psychiatric symptoms such as depression and cognitive impairment. We previously revealed that deficiency in IL-18 led to hippocampal abnormalities and resulted in depression-like symptoms. However, the impact of IL-18 deficiency on other brain regions remains to be clarified. In this study, we first sought to confirm that IL-18 expression in neural cells can be found in human brain tissue. Subsequently, we examined the expression of genes in the prefrontal cortex of Il18−/− mice and compared it with gene expression in mice subjected to a chronic mild stress model of depression. Extracted genes were further analyzed using Ingenuity® Pathway Analysis, in which 18 genes common to both the chronic mild stressed model and Il18−/− mice were identified. Of those, 16 were significantly differentially expressed between Il18+/+ and Il18−/− mice. We additionally measured protein expression of α-2-HS-glycoprotein (AHSG) and transthyretin (TTR) in serum and the brain. In the prefrontal cortex of Il18−/− mice, TTR but not AHSG was significantly decreased. Conversely, in the serum of Il18−/− mice, AHSG was significantly increased but not TTR. Therefore, our results suggest that in IL-18-deficit conditions, TTR in the brain is one of the mediators causally related to depression, and AHSG in peripheral organs is one of the regulators inducing energy imbalance. Moreover, this study suggests a possible “signpost” to clarify the molecular mechanisms commonly underlying the immune system, energy metabolism, neural function, and depressive disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.