BACKGROUND: For effective saccharification of rice straw we focused on enzyme preparations from wood-rotting fungi that have the ability to degrade cell wall polysaccharides and lignin. We tested extracellular enzyme preparations from 14 species of fungi for saccharification activity and examined the factor for saccharification by statistical analysis.
To examine the influence of a phenolic compound on the production of cellulolytic and xylanolytic enzymes of a woodrotting fungus Coriolus versicolor, a two-dimensional map of enzyme activity was constructed with various concentrations of cellobiose and vanillin. The productions of CMCase, xylanase, ~-glucosidase, and ~-xylosidase increased with higher cellobiose concentration and were markedly enhanced by addition of vanillin. Higher ratio of vanillin/cellobiose activated the production of these enzymes. Only acetyl esterase, which is not actively produced at the ligninolytic stage of C. versicolor, was inhibited by the monolignol vanillin. As the presence of vanillin is considered to approximate conditions of wood decay more closely than its absence, the present result demonstrates that addition of vanillin, a phenolic compound, enhanced the production of cellulolytic and xylanolytic enzymes for wood cell wall degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.