We analyzed the bilirubin uridine diphosphate‐glucuronosyltransferase (B‐UGT) gene in 42 Japanese newborns with hyperbilirubinemia and determined that 21 infants were heterozygous while 3 was homozygous for Gly71Arg. Allele frequency of Gly71Arg was 0.32 in newborns with hyperbilirubinemia, which was significantly higher than 0.13 in healthy Japanese controls. This mutant allele is also prevalent among Korean and Chinese healthy controls with a frequency of 0.23 in both populations. However, this mutation was not detected in 50 healthy German controls. These data suggest that the high frequency of the Gly71Arg mutation of the B‐UGT gene is associated with high incidence of neonatal hyperbilirubinemia in Japanese, Korean and Chinese populations.
H60, originally described as a dominant minor histocompatibility Ag, is an MHC class I-like molecule that serves as a ligand for the NKG2D receptor. In the present study, we identified two novel mouse chromosome 10-encoded NKG2D ligands structurally resembling H60. These ligands, which we named H60b and H60c, encode MHC class I-like molecules with two extracellular domains. Whereas H60b has a transmembrane region, H60c is a GPI-anchored protein. Recombinant soluble H60b and H60c proteins bound to NKG2D with affinities typical of cell–cell recognition receptors (Kd = 310 nM for H60b and Kd = 8.7 μM for H60c). Furthermore, expression of H60b or H60c rendered Ba/F3 cells susceptible to lysis by NK cells, thereby establishing H60b and H60c as functional ligands for NKG2D. H60b and H60c transcripts were detected only at low levels in tissues of healthy adult mice. Whereas H60b transcripts were detectable in various tissues, H60c transcripts were detected mainly in the skin. Infection of mouse embryonic fibroblasts with murine cytomegalovirus induced expression of H60b, but not H60c or the previously known H60 gene, indicating that transcriptional activation of the three types of H60 genes is differentially regulated. The present study adds two new members to the current list of NKG2D ligands.
Unsaturated fatty acids (FAs) serve as nutrients, energy sources, and signaling molecules for organisms, which are the major components for a large variety of lipids. However, structural characterization and quantitation of unsaturated FAs by mass spectrometry remain an analytical challenge. Here, we report the coupling of epoxidation reaction of the C═C in unsaturated FAs and tandem mass spectrometry (MS) for rapid and accurate identification and quantitation of C═C isomers of FAs in a shotgun lipidomics approach. Epoxidation of the C═C leads to the production of an epoxide which, upon collision induced dissociation (CID), produces abundant diagnostic ions indicative of the C═C location. The total intensity of the same set of diagnostic ions for one specific FA C═C isomer was also used for its relative and absolute quantitation. The simple experimental setup, rapid reaction kinetics (<2 min), high reaction yield (>90% for monounsaturated FAs), and easy-to-interpret tandem MS spectra enable a promising methodology particularly for the analysis of unsaturated FAs in complex biological samples such as human plasma and animal tissues.
To investigate the metabolism of HDL-apolipoprotein E (apoE) particles in human plasma, we isolated a fraction of plasma HDL-apoEs that lack apoA-I (HDL-LpE) from subjects with apoE3/3 phenotype by immunoaffinity. Plasma HDL-LpE had a particle size ranging from 9 nm to 18.5 nm in diameter and was characterized by two-dimensional nondenaturing gradient gel electrophoresis as having either ␥ -, pre  1 -, pre  2 -, or ␣ -electrophoretic mobility.
HDL-LpE was also present in the medium
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.