The context of atmospheric aerosols is an indispensable aspect in studying the Earth’s radiation budget, climate change, and air quality. Therefore, the quality technique in retrieving aerosol parameters is important for a better understanding their characteristics. The precise calculating of the aerosol physical parameter in the planetary boundary layer will increase the accuracy of evaluation of their impact on environmental conditions. In several atmospheric corrections of optical remote sensing using satellite sensors, the AOT’s values play an important role in arranging a Look Up Table (LUT) for scattering parameters. Therefore, this study aims to develop a method for processing and correcting the sun-photometer data to obtain the original AOT in the planetary boundary layer. In AOT calculation using the sun-photometer data, the solar radiation at the extraterritorial of the atmosphere is determined using the Langley plot. Then, using the target data at the same season as the data for the Langley plot, the temporal change of AOT is estimated by employing the Lambert-Beer Law with some corrections. The major correction for the AOT’s values computation in the measurement target is the contribution of molecule from the local station and Ozone (O3) from the GOME-2 satellite data. The result has been compared with an independent measurement using a sky-radiometer at the same time as the sun-photometer monitoring. From the overall procedure, the AOT’s values have uncertainties at approximately 2-5% compared to the sky-radiometer. Therefore, the procedure will be useful for studying aerosol optical properties in the lower troposphere.
Abstract. We introduce the new GOME-2 daily and monthly level 3 product of total column ozone (O3), total and tropospheric column nitrogen dioxide (NO2), total column water vapour, total column bromine oxide (BrO), total column formaldehyde (HCHO) and total column sulphur dioxide (SO2). The GOME-2 level 3 products are aimed to provide easily translatable and user-friendly data sets to the scientific community for scientific progress as well as satisfying public interest. The purpose of this paper is to present the theoretical basis as well as the verification and validation of the GOME-2 daily and monthly level 3 products. The GOME-2 level 3 products are produced using the overlapping area weighting method. Details of the gridding algorithm are presented. The spatial resolution of the GOME-2 level 3 products is selected based on sensitivity study. The consistency of the resulting level 3 products among three GOME-2 sensors is investigated through time series of global averages, zonal averages, and bias. The accuracy of the products is validated by comparing to ground-based observations. The verification and validation results show that the GOME-2 level 3 products are consistent with the level 2 data. Small discrepancies are found among three GOME-2 sensors, which are mainly caused by the differences in instrument characteristic and level 2 processor. The comparison of GOME-2 level 3 products to ground-based observations in general shows very good agreement, indicating the products are consistent and fulfil the requirements to serve the scientific community and general public.
Abstract. Formaldehyde (HCHO) and nitrogen dioxide (NO2) concentrations and profiles were retrieved from ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations during January 2017 through December 2018 at three sites in Asia: (1) Phimai (15.18° N, 102.5° E), Thailand; (2) Pantnagar (29° N, 78.90° E) in the Indo Gangetic plain (IGP), India; and (3) Chiba (35.62° N, 140.10° E), Japan. The observations were used to evaluate the NO2 and HCHO partial columns and profiles (0–4 km) simulated using the global chemistry transport model (CTM) CHASER. The NO2 and HCHO concentrations at all three sites showed consistent seasonal variations throughout the investigated period. Biomass burning affected the HCHO and NO2 variation in Phimai during the dry season and in Pantnagar during spring (March–May) and post-monsoon (September–November). The results on the HCHO to NO2 ratio (RFN), an indicator of high ozone sensitivity, show that the transition region (i.e., 1< RFN < 2) changes regionally, echoing the recent finding on the effectiveness of RFN. Moreover, reasonable estimates of transition regions can be derived accounting for the NO2- HCHO chemical feedback. CHASER demonstrated good performances reproducing the HCHO and NO2 abundances at Phimai, mainly above 500 m from the surface. Model results agree with the measured variations, ranging within the one sigma standard deviation of the observations. Despite the complex terrain of Pantnagar (mountainous terrain), the modeled NO2 estimates between 1.8–2 km were reasonable. Simulations at higher resolution improved the modeled NO2 estimates in Chiba, reducing the mean bias error (MBE) in the 0–2 km height by 35 %. However, resolution-based improvements were limited to the surface layers. Sensitivity studies showed pyrogenic emissions in Phimai contribute to the HCHO and NO2 concentrations up to ~ 50 and ~35 %, respectively.
Abstract. A horizontally pointing lidar is planned for deployment with other instruments in Fukushima, Japan, to continuously monitor and characterize the optical properties of radioactive aerosols and dust in an uninhabited area. Prior to installation, the performance of the lidar is tested at Chiba University. Data from the continuous operation of the lidar from August 2021 to February 2022 are analyzed for extinction and depolarization ratio. These are compared with the weather sensor and particulate matter (PM2.5) measurements to quantify the relationship between atmospheric conditions and optical properties of near-ground aerosols. The results show that lidar data’s extinction coefficient and depolarization ratio can have a quantifiable relationship with relative humidity (RH), absolute humidity, rain rate, wind speed, wind direction, and PM2.5 concentration. Analysis of the seven-month data shows that the optical properties of aerosol and dust depend on the combined effects of the weather parameters. An increase in RH or PM2.5 concentration does not imply an increase in radioactive aerosols. The average extinction coefficient and depolarization ratio of aerosols and dust originating from the land and ocean show different values and opposing trends which can aid in determining the occurrence of ground-based radioactive dust and aerosols. The information obtained from analyzing the interrelationship among lidar, weather parameters, and PM2.5 concentration is essential in assessing the occurrence of radioactive aerosols and characterizing local aerosol-weather relationships in a radioactive area. This result provides essential information in describing radioactive aerosols in Fukushima.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.