Since wastewater pumps used in sewage systems have a trade-off relationship between non-clogging ability and efficiency, many internal flow and performance estimation studies so far have focused on optimizing both parameters. Here we focus on vortex pumps with a large space that allows foreign matters to pass through inside the casing that are used as sewage pumps. In this paper, using experimental and numerical methods, we clarified clogging mechanism in the pumps using CFD (Computational Fluid Dynamics), Motion Capture and PIV (Particle Image Velocimetry) method. Firstly, since it was difficult to observe the motion of foreign matter in the pumps, a simple experimental apparatus was built to quantify it. Five cylindrical rods were set in a rectangular water passage made of acrylic that has an 80mm*80mm cross section. The motion of strings in the passage was studied with experiments and computations. Strings were chosen as foreign matter because they are comparatively easy to compute and experiment with compared to fabric for example. In the experiments, the motion of strings could be recorded with a high-speed video camera and their motions were quantified with two-dimensional motion capture system. In the computations, the motion of strings was simulated using DEM (Discrete Element Method) in the CFD software STAR-CCM+ by connecting particles with straight lines and coupling CFD with DEM. It is a numerical value method in which the motion and interaction of a large number of disintegrating objects is simulated. Its characteristic is that the point of contact between the particles is included in the equation of motion. Particles are connected by massless rods. These rods transmit force and momentum to each particle. Furthermore, the force between each particle is computed of the interaction between soft-particles and their bonding strength. In order to formulate the contact force between the particles, the spring-dashpot system is used. In addition, the optimal parameters of the DEM particles were obtained by conducting a parameter study. We confirmed that the motion of the strings in the flow direction coincided with at a high precision in the passage. Furthermore, by applying the computational method with the above results, we were able to simulate the motion of strings in a vortex pump. We found that strings were pulled back into the pump by the backflow in the tongue of the pump. This backflow was observed using PIV results, providing experimental confirmation of this mechanism. Moreover, we were able to simulate the motions of fibrous materials in the passage and vortex pump.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.