In our previous study, we found that mercaptopyruvate sulfurtransferase (MST) was evolutionarily related to mitochondrial rhodanese. To elucidate the difference between MST and rhodanese, the tissue, cellular, and subcellular distribution of rat MST was determined biochemically and immunohistochemically by using anti-MST antibody raised in rabbit. In an immunohistochemical study, tetramethyl rhodamine isothiocyanate-conjugated phalloidin against F-actin and fluorescein isothiocyanate-conjugated goat anti-rabbit immunoglobulin as a secondary antibody to the anti-MST antibody were used for double fluorescent staining. They were detected by confocal laser fluorescence microscopy. In the immunoelectron microscopic study of hepatocyte and renal tubular epithelium, a postembedding immunogold method was used. Biochemical studies including western blot analyses of various tissues and subcellular fractions of the liver were also performed. MST was widely distributed in rat tissues but the cellular distribution was found to be different in each tissue. MST was predominantly localized in proximal tubular epithelium in the kidney, pericentral hepatocytes in the liver, cardiac cells in the heart, and neuroglial cells in the brain. This immunocytochemical study also found that MST was localized in both mitochondria and cytoplasm.
Bronchioloalveolar lung carcinoma (BAC) exhibits many features that distinguish it from bronchogenic carcinomas. For early detection, therapy, and prevention of BAC, it is essential to understand its pathogenesis. Development of BAC appears to be stepwise, and the earliest lesion to be recognized is atypical adenomatous hyperplasia (AAH), the proliferative lesion of atypical epithelial cells along the alveolar septa. Our review of the studies of AAH revealed that certain populations of AAH cells exhibit active proliferation, aneuploidy, 3p and 9p deletions, K-ras codon 12 mutation, and disruption of the cell cycle control, but p53 gene aberrations are rare and telomerase activation is absent. We emphasize that AAH is an alveolar intraepithelial neoplasia. This allows more precise analyses of the process and mechanism of the development of BAC. Furthermore, AAH could serve as a surrogate end-point biomarker in future chemoprevention trials. The criteria for the diagnosis of AAH and related lesions should be established as early as possible.
A photoexcited titanium dioxide surface has a strong ability to decompose water into hydrogen and oxygen. We have studied this effect in order to use it to kill cancer cells in vitro and in vivo. A distinct cell killing effect was observed on cultured T-24 human bladder cancer cells treated with titanium dioxide particles and 300-400 nm UV light irradiation. Titanium dioxide plus UV light also dramatically suppressed the tumour growth of T-24 cells that were implanted in nude mice. Cells cultured on the titanium dioxide electrode were also killed under UV irradiation when the electrode was anodically polarised, suggesting that photogenerated holes are involved in the cell killing. The cell killing effect caused by titanium dioxide particles plus UV light irradiation was significantly hampered in the presence of L-cysteine and catalase, scavengers of hydroxyl radicals and hydrogen peroxide respectively. Transmission electron microscopic observations showed the titanium dioxide particles to be distributed on the cell surface and inside the cells. These results suggest that titanium dioxide particles under UV light irradiation produced photogenerated holes on the surface yielding hydroxyl radicals and hydrogen peroxide inside or outside the cells and the cells were then killed by the action of these highly oxidising molecules. The possible application of photoexcited titanium dioxide particles to cancer treatment as a new anti-cancer modality is discussed. Images Figure 6
The recently identified endogenous peptide apelin and its specific apelin receptor (APJ) are currently being considered as potential regulators in vascular tissue. Previously, we reported apelin mediates phosphorylation of myosin light chain and elicits vasoconstriction in vascular smooth muscle. In this study, physiological roles of the apelin-APJ system were investigated on atherosclerosis. In APJ and apolipoprotein E double-knockout (APJ ؊/؊ ApoE ؊/؊ ) mice fed a high-cholesterol diet, atherosclerotic lesions were dramatically reduced when compared with APJ Apelin receptor (APJ) is a G-protein-coupled receptor with seven transmembrane domains, and its endogenous ligand, apelin has been recently identified.1,2 The structures of APJ and apelin are highly conserved among species, and both are highly expressed in the cardiovascular system. 3,4 In the vascular system, APJ and apelin are known to be expressed in endothelium and vascular smooth muscle cells (VSMCs). Histological studies in rat show that the VSMCs of the medial layer of the aorta and pulmonary artery display intense staining for APJ-like immunoreactivity. 4 The vascular actions of apelin-APJ system may be complex. Under physiological conditions, the apelin-APJ system shows transient hypotension. The baseline blood pressure of APJ and angiotensin-type 1 receptor doubleknockout mice was significantly elevated compared with that of angiotensin-type 1 receptor knockout mice, 5 although APJ knockout (APJ Ϫ/Ϫ ) mice did not show any significant changes in cardiovascular parameters. In spontaneously hypertensive rats, APJ and apelin expression in both heart and aorta were markedly depressed compared with Wistar-Kyoto rats. 6 In aortae from type 2 diabetic db/db mice, APJ and apelin expression were
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.