With the aim of identifying sex determinants of fig, we generated the first draft genome sequence of fig and conducted the subsequent analyses. Linkage analysis with a high-density genetic map established by a restriction-site associated sequencing technique, and genome-wide association study followed by whole-genome resequencing analysis identified two missense mutations in RESPONSIVE-TO-ANTAGONIST1 (RAN1) orthologue encoding copper-transporting ATPase completely associated with sex phenotypes of investigated figs. This result suggests that RAN1 is a possible sex determinant candidate in the fig genome. The genomic resources and genetic findings obtained in this study can contribute to general understanding of Ficus species and provide an insight into fig’s and plant’s sex determination system.
Nineteen fig varieties and lines fromEurope and Asia have been fingerprinted by ISSR, RAPD, and SSR markers, respectively, using 13, 19, and 13 primer combinations. All primers produced 258 loci, with the highest number of loci (119) generated by RAPD (R p : 48.42). Clustering analysis was applied to the three marker datasets to elucidate the genetic structure and relationships among these varieties. Mean genetic similarities were 0.787, 0.717, and 0.749, respectively, as determined using ISSR, RAPD, and SSR. Each marker system produced incompletely separated clusters, although a weak binding group based on race type appeared in the combined dataset. Comparisons of coefficients revealed no correlation between different similarity matrices; congruence was observed between similarity matrices and co-phenetic matrices in all markers. Analysis of molecular variance (AMOVA) showed that most of the total polymorphism was attributable to within-group variance (ISSRs + RAPDs, 97.41%; SSRs, 90.18%). These results suggest that the genetic diversity of this fig population is low and that multiple marker utilization is critical to estimate the relatedness of figs at the variety level. Additionally, it was presumed that 'Houraihi', the oldest variety in Japan, was disseminated independently of other foreign varieties in the 17th century or before then.
BackgroundBecause the floral induction occurs in many plants when specific environmental conditions are satisfied, most plants bloom and bear fruit during the same season each year. In fig, by contrast, the time interval during which inflorescence (flower bud, fruit) differentiation occurs corresponds to the shoot elongation period. Fig trees thus differ from many species in their reproductive growth characteristics. To date, however, the molecular mechanisms underlying this unorthodox physiology of floral induction and fruit setting in fig trees have not been elucidated.ResultsWe isolated a FLOWERING LOCUS T (FT)-like gene from fig and examined its function, characteristics, and expression patterns. The isolated gene, F. carica FT (FcFT1), is single copy in fig and shows the highest similarity at the amino acid level (93.1%) to apple MdFT2. We sequenced its upstream region (1,644 bp) and identified many light-responsive elements. FcFT1 was mainly expressed in leaves and induced early flowering in transgenic tobacco, suggesting that FcFT1 is a fig FT ortholog. Real-time reverse-transcription PCR analysis revealed that FcFT1 mRNA expression occurred only in leaves at the lower nodes, the early fruit setting positions. mRNA levels remained a constant for approximately 5 months from spring to autumn, corresponding almost exactly to the inflorescence differentiation season. Diurnal variation analysis revealed that FcFT1 mRNA expression increased under relative long-day and short-day conditions, but not under continuous darkness.ConclusionThese results suggest that FcFT1 activation is regulated by light conditions and may contribute to fig’s unique fruit-setting characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.