An overview of the Seimei telescope, a 3.8 m optical infrared telescope located on Mt. Chikurinji in the Okayama prefecture of Japan, is presented. Seimei is a segmented-mirror telescope whose primary mirror consists of 18 petal-shaped segments. The telescope tube supporting the thin segmented mirrors is structurally incorporated within large arc-rails providing the elevation axis. The tube has a light-weight homologous structure designed with a genetic algorithm. The total weight of the telescope tube, including 1.4-ton optics, is only 8 tons. By virtue of its light weight, the telescope is able to point at an object anywhere in the observable sky within one minute. The telescope is operated by Kyoto University in collaboration with the National Astronomical Observatory of Japan (NAOJ). Half of the telescope time is used by Kyoto University. The remaining time is open to the Japanese astronomical community. NAOJ is responsible for the management of the open-use time, including handling of the observation proposals. The telescope is now regularly performing scientific observations on the basis of a variety of proposals.
A design of prototype Infra-Red High-dispersion Spectrograph (IRHS) is described. IRHS is a cryogenic echelle spectrometer for 8.2-m Subaru Telescope, which will operate at 8 to 13 µm with resolving power of 200,000. To achieve such a high dispersion and broad bandwidth, a Germanium immersion echelle grating was adopted. As a preliminary step, we started to develop the proto-type of IRHS (ProtoIRHS) with currently available Ge immersion grating (30×30×72 mm) and one 512×412 Si:As impurity band detector array, which will provide the maximum resolving power of 50,000 at 10 µm with slit width of 0.612 arcseconds (0.48 mm) and two-pixels sampling.
We have successfully fabricated germanium immersion gratings with resolving power of 45,000 at 10 µm by using a nano precision 3D grinding machine and ELID (ELectrolytic In-process Dressing) method. However the method spends large amount of machine times. We propose grooves shape with a new principle for a solid grating, which achieves high performance and lower cost.We have developed volume phase holographic (VPH) grisms with zinc selenide (ZnSe) prisms for spectrograph of the Subaru Telescope and the other telescopes. While a VPH grism with high index prisms achieves higher dispersion, diffraction efficiency of VPH grating decreases toward higher orders. A "quasi-Bragg grating" which inherits advantage of a VPH grating achieves high diffraction efficiency toward higher orders.Wavelength tuners with a pair of counter-rotation prisms for a VPH and quasi-Bragg grating obtain high diffraction efficiency over wide wavelength range. The novel immersion grating, VPH grism with high index prisms, quasi-Bragg grating and wavelength tuners dramatically reduce volumes of astronomical spectrographs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.