Sanitation of environmental surfaces with chlorine based-disinfectants is a principal measure to control outbreaks of norovirus or Clostridium difficile. The microbicidal activity of chlorine-based disinfectants depends on the free available chlorine (FAC), but their oxidative potential is rapidly eliminated by organic matter. In this study, the microbicidal activities of weakly acidified chlorous acid water (WACAW) and sodium hypochlorite solution (NaClO) against feline calcivirus (FCV) and C. difficile spores were compared in protein-rich conditions. WACAW inactivated FCV and C. difficile spores better than NaClO under all experimental conditions used in this study. WACAW above 100 ppm FAC decreased FCV >4 log10 within 30 sec in the presence of 0.5% each of bovine serum albumin (BSA), polypeptone or meat extract. Even in the presence of 5% BSA, WACAW at 600 ppm FAC reduced FCV >4 log10 within 30 sec. Polypeptone inhibited the virucidal activity of WACAW against FCV more so than BSA or meat extract. WACAW at 200 ppm FAC decreased C. difficile spores >3 log10 within 1 min in the presence of 0.5% polypeptone. The microbicidal activity of NaClO was extensively diminished in the presence of organic matter. WACAW recovered its FAC to the initial level after partial neutralization by sodium thiosulfate, while no restoration of the FAC was observed in NaClO. These results indicate that WACAW is relatively stable under organic matter-rich conditions and therefore may be useful for treating environmental surfaces contaminated by human excretions.
For practical applications of chlorine in food processing, monitoring of FAC is critical to validate disinfection efficacy. In this study we found that chlorite-based sanitizers acquired a pink colour upon contact with BSA or broiler carcasses. This pink colour interfered with FAC monitoring by methods that measure oxidized N,N-diethyl-p-phenylenediamine absorbance between 513-550 nm. Alternatively, FAC levels of chlorite-based sanitizers could be monitored using the absorbance of 3,3',5,5'-tetramethylbenzidine at 650 nm, which does not overlap with the acquired pink colour. These data provide valuable information for safety management of disinfection processes that use chlorite-based sanitizers.
Introduction: Human norovirus (HuNoV) is a leading cause of infectious gastroenteritis. Since HuNoV shows resistance to alcohol, chlorine-based sanitizers are applied to decontaminate the virus on environmental surfaces. Chlorous acid water (CA) has been recently approved as a novel chlorine-based disinfectant categorized as a Type 2 OTC medicine in Japan. In this study, we aimed to evaluate the capability of CA to inactivate HuNoV. Methods: HuNoV (genogroups GII.2 and GII.4) was exposed to the test disinfectants including CA and sodium hypochlorite (NaClO), and the residual RNA copy was measured by reverse transcription quantitative PCR (RT-qPCR) after pretreatment with RNase. In addition, the log 10 reduction of HuNoV RNA copy number by CA and NaClO was compared in the presence of bovine serum albumin (BSA), sheep red blood cells (SRBC), polypeptone, meat extract or amino acids to evaluate the stability of these disinfectants under organic-matter-rich conditions. Results: In the absence of organic substances, CA with 200 ppm free available chlorine provided >3.0 log 10 reduction in the HuNoV RNA copy number within 5 min. Even under high organic matter load (0.3% each of BSA and SRBC or 0.5% polypeptone), 200 ppm CA achieved >3.0 log 10 reduction in HuNoV RNA copy number while less than 1.0 log 10 reduction was observed with 1,000 ppm sodium hypochlorite (NaClO) in the presence of 0.5% polypeptone. CA reacted with only cysteine, histidine and glutathione while NaClO reacted with all of the amino acids tested. Conclusions: CA is an effective disinfectant to inactivate HuNoV under organic-matter-rich conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.