Ethylene gas is used as a hormone by plants, in which it acts as a critical growth regulator. Its synthesis is also rapidly evoked in response to a variety of biotic and abiotic stresses. The Arabidopsis ethylene-overproducer mutants eto2 and eto3 have previously been identified as having mutations in two genes, ACS5 and ACS9, respectively; these encode isozymes of 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyse the rate-limiting step in ethylene biosynthesis. Here we report that another ethylene-overproducer mutation, eto1, is in a gene that negatively regulates ACS activity and ethylene production. The ETO1 protein directly interacts with and inhibits the enzyme activity of full-length ACS5 but not of a truncated form of the enzyme, resulting in a marked accumulation of ACS5 protein and ethylene. Overexpression of ETO1 inhibited induction of ethylene production by the plant growth regulator cytokinin, and promoted ACS5 degradation by a proteasome-dependent pathway. ETO1 also interacts with CUL3, a constituent of ubiquitin ligase complexes in which we propose that ETO1 serves as a substrate-specific adaptor protein. ETO1 thus has a dual mechanism, inhibiting ACS enzyme activity and targeting it for protein degradation. This permits rapid modulation of the concentration of ethylene.
In plants, the transition to reproductive growth is of particular importance for successful seed production. Transformation of the shoot apical meristem (SAM) to the inflorescence meristem (IM) is the crucial first step in this transition. Using laser microdissection and microarrays, we found that expression of PANICLE PHYTOMER2 (PAP2) and three APETALA1 (AP1)/ FRUITFULL (FUL)-like genes (MADS14, MADS15, and MADS18) is induced in the SAM during meristem phase transition in rice (Oryza sativa). PAP2 is a MADS box gene belonging to a grass-specific subclade of the SEPALLATA subfamily. Suppression of these three AP1/FUL-like genes by RNA interference caused a slight delay in reproductive transition. Further depletion of PAP2 function from these triple knockdown plants inhibited the transition of the meristem to the IM. In the quadruple knockdown lines, the meristem continued to generate leaves, rather than becoming an IM. Consequently, multiple shoots were formed instead of an inflorescence. PAP2 physically interacts with MAD14 and MADS15 in vivo. Furthermore, the precocious flowering phenotype caused by the overexpression of Hd3a, a rice florigen gene, was weakened in pap2-1 mutants. Based on these results, we propose that PAP2 and the three AP1/FUL-like genes coordinately act in the meristem to specify the identity of the IM downstream of the florigen signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.