The aim of this study was to investigate the effects of several dietary fatty acids (FAs) on semen quality and blood parameters in rams. We gave diet-supplemented treatments (35 g day(-1) ram(-1)) by C16:0 (palm oil), C18:2 [sunflower oil (SO)] and an n-3 source [fish oil (FO)] to 12 rams, who were fed for 15 weeks during their breeding season. Semen was collected once per week. Semen samples were extended with Tris-based cryoprotective diluents, then cooled to 5 °C and stored in liquid nitrogen. Positive responses were seen with FO after 4 weeks. The mean prefreezing semen characteristics improved with the intake of FO (P < 0.05). Interestingly, maximum sperm output in FO was achieved 7.5 × 10(9) when compared to palm oil 5.3 × 10(9). Rams that received FO had the highest total testosterone concentrations (11.3 ng ml(-1) for FO, 10.8 ng ml(-1) for SO and 10.2 ng ml(-1) for palm oil) during the experiment (P < 0.05). FO also improved the rams' sperm characteristics after thawing (P < 0.05). Although C16:0 is a major saturated FA in ram sperm and all rams have been fed isoenergetic rations, the unique FAs of FO improved fresh semen quality and freezing ability compared to other oils.
Probiotics have been proposed as alternatives to pharmacological products in several medical conditions including the modulation of obesity, which is frequently associated with poor semen quality. However, effects of probiotics on male fertility have been less investigated. This study assessed the effect of Lactobacillus rhamnosus PB01 (DSM-14870) on sperm kinematic parameters in Normal-weight (NW) and diet-induced obese (DIO) models. NW and DIO C57BL/6NTac mice were divided into two subgroups with or without a single daily dose (1x109CFU) of L. rhamnosus for four weeks. Sperm motility and kinematics together with blood lipid profiles and reproductive hormone levels were assessed using the sperm class analyzer system. Probiotic supplementation increased serum testosterone, LH and FSH levels in both NW and DIO groups resulting in significantly (P<0.05) higher velocity (VSL, VCL and VAP) and percentages of progressively motile sperm and significantly lower percentages of immotile sperm. Other kinematic parameters (Lin, STR, ALH and BCF) were also increased in both probiotic supplemented DIO and NW groups at the 10% level of significance. Probiotic supplemented DIO mice demonstrated significantly higher percentages of progressively motile sperm versus DIO controls. This study demonstrated the potential of L. rhamnosus PB01 as a regulatory agent with positive effects on weight loss and reproductive-hormones, significantly improving sperm motility and kinematic parameters in male DIO models.
Adipose-derived stromal/stem cells (ASCs) are currently being considered for clinical use for a number of indications. In order to develop standardized clinical protocols, it is paramount to have a full characterization of the stem cell preparations. The surface marker expression of ASCs has previously been characterized in multiple studies. However, most of these studies have provided a cross-sectional description of ASCs in either earlier or later passages. In this study, we evaluate the dynamic changes of 15 different surface molecules during culture. Using multichromatic flow cytometry, ASCs from three different donors each in passages 1, 2, 4, 6, and 8 were analyzed for their co-expression of markers associated with mesenchymal stem cells, wound healing, immune regulation, ASC markers, and differentiation capacity, respectively. We confirmed that at an early stage, ASC displayed a high heterogeneity with a plethora of subpopulations, which by culturing became more homogeneous. After a few passages, virtually all ASCs expressed CD29, CD166 and CD201, in addition to canonical markers CD73, CD90, and CD105. However, even at passage 8, there were several predominant lineages that differed with respect to the expression of CD34, CD200 and CD271. Although the significance of remaining subpopulations still needs to be elucidated, our results underscore the necessity to fully characterize ASCs prior to clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.