Ammonia is one of the promising carriers for hydrogen and a critical ingredient in many industries including fertilizers and pharmaceuticals. In the KAAP process, ruthenium- (Ru-) based catalysts showed 10-20 more activity compared with iron- (Fe-) based catalysts. The modifications that are applied to Ru-based catalysts revolve around changing the material of its support and/or promoters. This study compares the performance of a Ru-based catalyst for ammonia synthesis supported by La2Ce2O7 using barium (Ba), cesium (Cs), potassium (K), and lithium (Li) as promoters. Based on structural, physicochemical, adsorption, and electronic state analysis, the Cs-promoted catalyst is expected to perform best among all the promoted catalysts, while our findings suggest that the K-promoted catalyst performed the best in the actual catalytic reaction. This result will affect the development of Ru/La2Ce2O7-based catalysts, especially in ammonia synthesis at different temperatures and pressures.
Ammonia (NH3) is a carbon-free and hydrogen-rich (17.8 wt% H2) chemical that has the potential to revolutionize the energy sector. Compared with hydrogen (H2), NH3 can be easily liquefied, stored, and transported globally. However, the conventional thermocatalytic process to synthesize NH3 accounts for 2% of global energy consumption and 1.2% of CO2 emissions annually. To make the process further efficient, new catalysts must be developed to allow for NH3 synthesis in milder conditions with high thermal stability. To this end, we have developed ruthenium (Ru) supported on perovskite (BaCexOy) via a ball-milling-assisted exsolution method that allows for a more tunable morphology. Reactivity is compared with the catalyst prepared via the conventional impregnation technique. The as-synthesized catalysts are characterized by XRD, H2-TPR, TEM, XPS, and APT. The NH3 synthesis is carried out in a packed-bed tube reactor thermochemically. Using N2 instead of Ar as the carrier gas during exsolution can favour reactivity by increasing active sites and perhaps improving metal-support interaction. The impregnated sample shows higher reactivity than the exsolved catalyst; however, the long-term durability is slightly better using the exsolved catalyst. Finally, APT results interestingly show that the exsolved catalyst is more resistant to hydride formation and hydrogen poisoning, which is one of the main deactivation mechanisms for such metallic catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.