We present a fully-automated technique for visualizing localized cerebral ventricle shape differences between large clinical subject groups who have received a magnetic resonance (MR) image scan. The technique combines a robust, automated technique for ventricular segmentation with a 3D surfacebased radial thickness mapping approach that allows spatiallylocalized statistical tests of relative shape differences between clinical groups. The technique is used to analyze localized ventricular expansion in Alzheimer's Disease (AD) and mild cognitive impairment (MCI) in a large cohort of communitydwelling elderly individuals (N=339). The resulting maps are the first to chart localized ventricular dilation in a cohort of this size. Besides showing patterns of ventricular expansion that may be consistent with the spatial progression of ADrelated pathology, the maps reveal new information about localized ventricular atrophy that may have been overlooked to date. A detailed understanding of spatial atrophy patterns may be useful for early disease detection or for patient monitoring in drug trials.
The amyloid imaging agent, Pittsburgh Compound-B, binds with high affinity to β-amyloid (Aβ) in the brain, and it is well established that PiB also shows non-specific retention in white matter (WM). However, little is known about retention of PiB in areas of white matter hyperintensities (WMH), abnormalities commonly seen in older adults. Further, it is hypothesized that WMH are related to both cognitive dysfunction and Aβ deposition. The goal of the present study was to explore PiB retention in both normal-appearing WM (NAWM) and WMH in a group of elderly, cognitively normal individuals. In a group of cognitively normal elderly (n = 64; 86.5 ± 2.6 years) two analyses were applied: (1) ROIs were placed over periventricular areas in which WMH caps are commonly seen on all subjects, regardless of WMH burden or size. (2) Subject-specific maps of NAWM and WMH were co-registered with the PiB-PET images and mean SUVR values were calculated in these NAWM and WMH maps. PiB retention was significantly reduced in the ROIs of subjects with high WMH compared to subjects with low WMH. Additionally, in subjects with high WMH, there was significantly lower PiB retention in subject-specific maps of WMH compared to NAWM, which was not observed in subjects with low WMH, likely because of the small size of WMH maps in this group. These data suggest that WM in areas of WMH binds PiB less effectively than does normal WM. Further exploration of this phenomenon may lead to insights about the molecular basis of the non-specific retention of amyloid tracers in white matter.
Severe worry includes a complex blend of maladaptive affective and cognitive processes. Contrary to other forms of anxiety, there is no consensus in the field regarding the neural basis of worry. To date, no study has looked at neural patterns associated specifically with in-scanner induction and reappraisal of worry. In this study, we attempt to describe distinct components of the ‘neural phenomenology’ of worry: induction, maintenance, severity and reappraisal, by using a personalized, in-scanner worry script. Twenty older, non-anxious participants and twenty late-life generalized anxiety disorder (GAD) participants were included. Whole-brain axial pseudo-continuous arterial spin-labeling scans were collected. We used a voxel-wise two-way ANOVA to test the group-by-block interaction. Worry induction was associated with greater cerebral blood flow (CBF) in the visual cortex, thalamus, caudate and medial frontal cortex compared with the rest. Reappraisal was associated with greater CBF in similar regions, whereas the orbital frontal gyrus showed lower CBF relative to rest. Relative to non-anxious participants, GAD had greater CBF in multiple regions during worry induction (visual and parietal cortex, middle and superior frontal) and lower CBF during reappraisal in the supplemental motor area, middle cingulate gyrus, insula and putamen. Except for the thalamus, there was no change in CBF throughout the five blocks of worry induction and reappraisal. Severe worry is distinctly associated with increased CBF in several neocortical regulatory regions. We present new data supporting the view of worry as a complex process, engaging multiple regions in the initiation, maintenance and reappraisal of worry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.