This study investigated how surface defects affect the fatigue performance of laser powder bed fusion (LPBF) Ti6Al4V(ELI) test specimens in as-built surface roughness and heat-treated conditions. Tensile and fatigue specimens were built in three orthogonal directions for testing. Fatigue testing was carried out to determine the maximum stress at which a run-out number of 5 million cycles to failure could be achieved. Fractured specimens were analysed and compared for crack initiation and propagation characteristics using scanning electron microscopy. Conclusions were drawn on the possibility of producing Ti6Al4V(ELI) aircraft components through LPBF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.