Tuberculosis (TB) remains a leading global health problem that is aggravated by emergence of drug-resistant strains, which account for increasing number of treatment-refractory cases. Thus, eradication of this disease will strongly require better therapeutic strategies. Identification of host factors promoting disease progression may accelerate discovery of adjunct host-directed therapies (HDTs) that will boost current treatment protocols. HDTs focus on potentiating key components of host anti-mycobacterial effector mechanisms, and limiting inflammation and pathological damage in the lung. Granulomas represent a pathological hallmark of TB. They are comprised of impressive arrangement of immune cells that serve to contain the invading pathogen. However, granulomas can also undergo changes, developing caseums and cavities that facilitate bacterial spread and disease progression. Here, we review current concepts on the role of granulomas in pathogenesis and protective immunity against TB, drawing from recent clinical studies in humans and animal models. We also discuss therapeutic potential of inflammatory pathways that drive granuloma progression, with a focus on new and existing drugs that will likely improve TB treatment outcomes.
Interleukin-4 (IL-4)-induced T helper (Th) 2 cells promote susceptibility to the protozoan parasite Leishmania major, while conferring immunity to the intestinal trematode Schistosoma mansoni. Here, we report that abrogation of IL-4 receptor alpha (IL-4Rα) signaling on B cells in BALB/c mice (mb1 cre IL-4Rα -/lox ) transformed nonhealer BALB/c to a healer phenotype with an early type 1 and dramatically reduced type 2 immune response and an absence of ulceration and necrosis during cutaneous leishmaniasis. From adoptive reconstitution and mixed bone-marrow chimera studies in B cell-deficient (μMT) mice, we reveal a central role for B cellderived IL-4 and IL-4Rα in the optimal induction of the susceptible type 2 phenotype to L. major infection. We further demonstrate that the absence of IL-4Rα signaling on B cells exacerbated S. mansoniinduced mortality and pathology in BALB/c mice, due to a diminished type 2 immune response. In both disease models, IL-4Rα-responsive B cells displayed increased IL-4 production as early as day 1 after infection. Together, these results demonstrate that IL-4-producing and IL-4Rα-responsive B cells are critical in regulating and assisting early T helper dichotomy toward Th2 responses, which are detrimental in cutaneous leishmaniasis but beneficial in acute schistosomiasis.IL-4R alpha | B cells | leishmaniasis | schistosomiasis | mouse
One of the first steps toward mounting an effective immune response to Mycobacterium tuberculosis (Mtb) is recognition of the pathogen through pattern-recognition receptors (PRRs) expressed by innate immune cells. Activation of the PRR Dectin-1 by an unknown mycobacterial ligand triggers an intracellular signaling cascade involving numerous proteins, including spleen tyrosine kinase, protein kinase C-delta, and caspase recruitment domain family member 9, some of which have been shown to influence host immune response to TB infection. Here, we review the role of Dectin-1 signaling pathway in anti-mycobacterial immunity and discuss its contribution in the control of Mtb infection, and potential applications in TB vaccine adjuvanticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.