The external hydrostatic buckling behavior of fiber metal laminate (FML) composite cylinders was investigated numerically. The critical buckling pressure predicted by eigenvalue analysis was compared with experimental results. The numerical results showed different modes of buckling and buckling deformation for cylinders of different fiber orientation when subjected to external hydrostatic loading. FML cylinder with 0 /90 fiber orientation exhibited higher buckling strength and lower buckling deformation as compared to FML cylinders of 60 /30 , AE45 , and AE55 fiber orientations. The orientation of fiber has significant influence on the performance of FML composite cylinder as compared to fiberreinforced plastic thickness. The correlation between numerical and experimental results is discussed in terms of buckling strength, circumferential stiffness, and buckling deformations. It was observed that the cylinders were less sensitive to initial imperfections irrespective of fiber-reinforced plastic thickness. In addition, the results of finite element analysis and experimental results indicate good matches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.