Multi-faceted stresses of social, environmental, and economic nature are increasingly challenging the existence and sustainability of our societies. Cities in particular are disproportionately threatened by global issues such as climate change, urbanization, population growth, air pollution, etc. In addition, urban space is often too limited to effectively develop sustainable, nature-based solutions while accommodating growing populations. This research aims to provide new methodologies by proposing lightweight green bridges in inner-city areas as an effective land value capture mechanism. Geometry analysis was performed using geospatial and remote sensing data to provide geometrically feasible locations of green bridges. A multi-criteria decision analysis was applied to identify suitable locations for green bridges investigating Central European urban centers with a focus on German cities as representative examples. A cost-benefit analysis was performed to assess the economic feasibility using a case study. The results of the geometry analysis identified 3249 locations that were geometrically feasible to implement a green bridge in German cities. The sample locations from the geometry analysis were proved to be validated for their implementation potential. Multi-criteria decision analysis was used to select 287 sites that fall under the highest suitable class based on several criteria. The cost-benefit analysis of the case study showed that the market value of the property alone can easily outweigh the capital and maintenance costs of a green bridge, while the indirect (monetary) benefits of the green space continue to increase the overall value of the green bridge property including its neighborhood over time. Hence, we strongly recommend light green bridges as financially sustainable and nature-based solutions in cities worldwide.
Despite multiple challenges, floods remain the most frequently occurring hazard in Myanmar. Current developments of political instability, multidimensional insecurity, and associated economic crisis have burdened the existing vulnerabilities and inequalities of the Burmese people and their ecosystems. Diminishing adaptive capacities of degraded ecosystems, poor infrastructure, and extreme poverty, together with major livelihood dependency on climate-sensitive agriculture, will further increase flood risk. Moreover, other hazards such as COVID-19, heatwaves, and droughts may exacerbate flood impacts leading to compound disasters. Understanding how and which factors drive flood risk, and where they distribute are important to reduce flood risk, address its root causes, and prevent future flood damages by lessening exposures, vulnerabilities, and even hazards. We aim to compare the spatial-temporal distributions between dynamic pressures and flood risk, and identify the spatial relations on a national scale and within floodplains. We draw on socio-ecological risk assessment, systematic review, time-series analysis and modified t-test after testing spatial auto-correlations of dynamic pressures and flood risk. Our results show that many socio-ecological dynamic pressures driven by economic- and governance-related root causes had positive spatial relationships with flood risks. We recommend effective land use and environmental governance that consider compound and cascaded flood risk and investment in public services and infrastructure such as health and education to reduce vulnerabilities and increase resilience of Myanmar people.
<p>Worldwide, floods have major impacts on people, economies, and the environment. In Myanmar, floods are the most frequently occurring hazard and have the highest contribution to average annual loss compared to all other hazards. Although the population has learned to adapt to yearly flooding, climate change exacerbates the frequency and magnitude of flood events to an extent where the population has little capacity to cope. Many factors such as poverty and dependency on agriculture make the Burmese people more vulnerable to major flood events. The need to better understand flood risk and its spatial patterns in Myanmar has become extremely important.</p><p>However, the state of the art on flood risk in Myanmar is not well developed. Analysis has mostly focused on flood loss, hazard, mitigation, and resilience, or future vulnerability to flooding. Here we present a comprehensive quantitative indicator-based risk assessment for a major flood event with a 100-year return period at the township level for Myanmar. This analysis will show the spatial distribution of major river flood risk based on the IPCC framing of risk while highlighting factors of vulnerability that contribute to risk. The analysis considered the present-day flood risk to people. Flood extent and population distribution were used to create a hazard/exposure indicator. Then, a systematic literature review was performed to identify relevant vulnerability indicators and drivers for Myanmar. Data for each vulnerability indicator was collected and compiled into one vulnerability index score. Then, we compared two different methods of aggregation of the elements into a risk index: multiplicative arithmetic aggregation and overlay of different quantiles of hazard/exposure and vulnerability. Post hoc analysis was conducted to test the relationship between elements for the multiplicative aggregation method.</p><p>The analysis showed that the highly exposed populations and townships are adjacent to rivers, with most flooding in the Ayeyarwady region. Major urban population centers such as Yangon and Mandalay cities have high exposure to flooding. Vulnerability to river flooding is primarily triggered by poverty, inadequate access to healthcare with a limited number of doctors and beds, poor road networks, and a small number of households with boats. Risk is highly concentrated in townships in the Ayeyarwady, Bago, and Rakhine regions in both aggregation methods.</p><p>Importantly, there are limitations in this study and future work could focus on addressing these gaps. For example, this assessment focused on a single hazard (flood) and a single exposed element (people) whereas Myanmar has a multi-hazard environment with complex social-ecological systems and high levels of resource dependency. Nevertheless, our study results remain essential for local and national authorities and related organizations in the field of disaster risk reduction as it has a strong conceptual foundation of risk with a clear focus on entry points for vulnerability and risk reduction.</p><p>&#160;</p><p>&#160;</p>
<p>Multiple disaster risks are interconnected and are commonly caused by ecosystem degradation. Ecosystem degradation also drives many of the world's major problems, including biodiversity loss, climate change, and poverty. Ecosystem-based solutions such as ecosystem-based adaptation, biodiversity conservation, and community forestry are increasingly implemented in various contexts. However, little is known about possible interlinkages, synergies, and trade-offs among those ecosystem-based responses and potential barriers to their integration. This study explores spatial and conceptual synergies and trade-offs among ecosystem-based adaptation, biodiversity conservation, and community forestry and the barriers to implementing integrated actions.</p><p>The study was located in Ayeyarwady Delta, Myanmar. The research first used a comprehensive socio-ecological risk assessment framework and multi-risk impact chains to understand high-risk areas and identify potential areas for ecosystem-based adaptation. Potential areas for biodiversity conservation and community forestry respectively were then identified using criteria developed based on a literature review. At this point, spatial autocorrelations were tested, and a modified t-test was used to identify spatial relationships among them. Finally, qualitative expert interviews were conducted, and content analysis was used to understand conceptual synergies, trade-offs, and potential barriers for integrated action.</p><p>Results show potential for both social and ecological synergies. Ecosystem-based adaptation and biodiversity conservation show synergies with community forestry in the areas of local governance, and the relevance of social factors such as multi-stakeholder awareness, indigenous knowledge, land tenure security, community rule-making and ownership, and biodiversity-friendly livelihoods. Synergies between ecosystem-based adaptation and biodiversity conservation are mostly related to ecological factors such as benefits for biodiversity, ecosystem health, and corridor and buffer functions. Moreover, significant spatial synergies were observed between community forestry and biodiversity conservation areas.</p><p>Despite synergies, trade-offs exist and are mainly linked to social inequalities and the use of biodiversity-damaging practices. Spatial trade-offs occur between ecosystem-based adaptation and community forestry due to a lack of land tenure security in high-risk townships. Conceptual trade-offs between ecosystem-based adaptation and community forestry are mainly linked to inequality, lack of access, local power relations, and land tenure insecurity. Trade-offs between biodiversity and the other two are observed due to the use of monocultures, exotic species, and clear-cutting practices. Legal, social, and financial barriers have been identified for the implementation of synergetic actions, while proper facilitation, community rule-making, and biodiversity-friendly livelihoods are key enabling factors in achieving sustainable ecosystem restoration.</p><p>This research argues that ecosystem-based adaptation, biodiversity conservation, and community forestry benefit each other, highlighting that fostering those synergies is key for ecosystem restoration and conservation in the face of climate change, biodiversity loss, and poverty. Furthermore, the research stresses the need to consider community governance and biodiversity aspects in ecosystem-based adaptation to address societal challenges.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.