The possibility of applying twisted retarders to a cholesteric liquid crystal polarizer for the control of polarization states has been investigated. In particular, we have focused on the application of twisted retarders to the conversion of circular polarization states into linear polarization states. It has been found that circular polarization states could be converted into arbitrary linear polarization states using twisted retarders. We have fabricated left-handed twisted retarder films using commercially available liquid crystals. Their optical characteristics were experimentally investigated and found to be in good agreement with theoretical expectations.
Untreated and treated with alkali (NaOH), acrylic acid (AA), diammonium phosphate (DAP), and maleic anhydride (MA) of coconut filter (CF) fibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and single fiber test. The composites were fabricated from CF and film resins (Polylactic-acid (PLA) and Polypropylene (PP)) using a hot press machine. Generally, our results indicated that chemical treatments improved the mechanical properties of CF fiber composites, except for the DAP-treated fiber/PP composite. The AA treatment of fiber produced the best adhesion at the fiber-matrix interface. Consequently, the tensile and flexural strengths of AA-treated fiber-reinforced polymer were the highest. CF fiber-reinforced PLA composites had better mechanical properties than CF fiber-reinforced PP composites. Our results show that CF fiber is feasible as a reinforcement for polymer composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.