The transmission characteristics of the printed circuit board (PCB) ensure signal integrity and support the entire circuit system, with impedance matching being critical in the design of high-speed PCB circuits. Because the factors affecting impedance are closely related to the PCB production process, circuit designers and manufacturers must work together to adjust the target impedance to maintain signal integrity. Five machine learning models, including decision tree (DT), random forest (RF), extreme gradient boosting (XGBoost), categorical boosting (CatBoost), and light gradient boosting machine (LightGBM), were used to forecast target impedance values. Furthermore, the Optuna algorithm is used to determine forecasting model hyperparameters. This study applied tree-based machine learning techniques with Optuna to predict impedance. The results revealed that five tree-based machine learning models with Optuna can generate satisfying forecasting accuracy in terms of three measurements, including mean absolute percentage error (MAPE), root mean square error (RMSE), and coefficient of determination (R2). Meanwhile, the LightGBM model with Optuna outperformed the other models. In addition, by using Optuna to tune the parameters of machine learning models, the accuracy of impedance matching can be increased. Thus, the results of this study suggest that the tree-based machine learning techniques with Optuna are a viable and promising alternative for predicting impedance values for circuit analysis.
For electronic products, printed circuit boards are employed to fix integrated circuits (ICs) and connect all ICs and electronic components. This allows for the smooth transmission of electronic signals among electronic components. Machine learning (ML) techniques are popular and employed in various fields. To capture the nonlinear data patterns and input–output electrical relationships of analog circuits, this study aims to employ ML techniques to improve operations from modeling to testing in the analog IC packaging and testing industry. The simulation calculation of the resistance, inductance, and capacitance of the pin count corresponding to the target electrical specification is a complex process. Tasks include converting a two-dimensional circuit into a three-dimensional one in simulation and modeling-buried structure operations. In this study, circuit datasets are employed for training the ML model to predict resistance (R), inductance (L), and capacitance (C). The least squares support vector regression (LSSVR) with Genetic Algorithms (GA) (LSSVR-GA) serves as an ML model for forecasting RLC values. Genetic algorithms are used to select parameters of LSSVR models. To demonstrate the performance of LSSVR models in forecasting RLC values, three other ML models with genetic algorithms, including backpropagation neural networks (BPNN-GA), random forest (RF-GA), and eXtreme gradient boosting (XGBoost-GA), were employed to cope with the same data. Numerical results illustrated that the LSSVR-GA outperformed the three other forecasting models by around 14.84% averagely in terms of mean absolute percentage error (MAPE), weighted absolute percent error measure (WAPE), and normalized mean absolute error (NMAE). This study collected data from an IC packaging and testing firm in Taiwan. The innovation and advantage of the proposed method is using a machine approach to forecast RLC values instead of through simulation ways, which generates accurate results. Numerical results revealed that the developed ML model is effective and efficient in RLC circuit forecasting for the analog IC packaging and testing industry.
With wireless applications flourish like mobile phone, consumer end products must tend to small form factor development. More functions, less dimension, and high integration are future technology trend in chip package development roadmap. lntegrated Passive Device (IPD) has these advantages in SiP and 3DIC applications. IPD technology can integrated more passive circuits/components in one IPD die and reduce SMD components in SiP module. This can reduce SMD components quantity and assembly cost then increase SiP profit margin. In 3DIC field, IPD can be implemented in Silicon interposer to increase signal integrity. In this paper, we use Agilent ADS Momentum and EMpro to design and simulate MIM capacitors and use SPIL IPD process to implement these capacitors. From on wafer probing measurement results, we can provide good performance capacitors using in wireless applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.