This article applies the dynamic conditional correlation model of Engle (2002) with error correction terms in order to investigate the optimal hedge ratios of British and Japanese currency futures markets. For a comparison, the estimates of three other models -- traditional generalized autoregressive conditional heteroskedasticity (GARCH), ordinary least square (OLS) and error correction model (ECM) -- are also reported. Results show that the dynamic conditional correlation model yields the best hedging performance in both futures markets. Nonetheless, the traditional multivariate GARCH model (which exhibits constant conditional correlations and time-varying hedge ratios) performs the worst hedging effectiveness, even inferior to the time-invariant hedging methods (OLS and ECM). The inclusion of dynamic conditional correlations in the GARCH model can therefore better capture the frequent fluctuations in futures markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.