Monitoring structural health using mechanoluminescent (ML) effects is widely considered as a potential full‐field and direct visualizing optical method with high spatial and temporal resolution and simple setup in a noncontact manner. The challenges and uncertainties in the mapping of ML field to effective strain field, however, tend to limit significant commercial ML applications for structural health monitoring systems. Here, however, quantification problems are resolved using the digital image correlation (DIC) method. Specifically, an image containing mechanically induced photon information is processed using a DIC algorithm to measure the strain field components, which enables the establishment of a calibration curve when the ML field is mapped onto the effective strain field using pixel level information. The results show a linear relationship between effective strain and ML intensity despite the plastic flow in ML skin. Furthermore, the calibration curve allows for easy conversion of ML field to effective‐strain field at the crack‐tip plastic zone of the alloy structure, retaining its spatial resolution. The compatibility of ML skin with the DIC algorithm not only enables the quantification of the ML effects of several organic/inorganic ML materials, but may also be useful in elucidating the fundamentals of the trap‐controlled mechanism.
Increasing ubiquitous collaborative intelligence between humans and machines requires human–machine communication (HMC) that is more human and less machine‐like to accomplish given tasks. Although speech signals are considered the best modes of communication in HMC, background noise often interferes with these signals. Therefore, research focused on integrating lip‐reading technology into HMC has gained significant attention. However, lip‐reading functions effectively only in well‐lit environments. In contrast, HMC may occur daily in dark environments owing to potential energy shortages, increased exploration in darkness, nighttime emergencies, etc. Herein, a possible method for HMC in the dark mode is presented, which is realized based on deep learning motion patterns of persistent luminescence (PL) of the skin surrounding the lips. An ultrasoft PL–polymer composite patch is used to record the motion pattern of the skin during speech in the dark. It is found that visual geometric group network (VGGNET‐5) and residual neural network (ResNet‐34) could predict spoken words in darkness with test accuracies of 98.5% and 98.75%, respectively. Furthermore, these models could effectively distinguish similar‐sounding words such as “around” and “ground.” Dark‐mode communication can allow a wide range of people, including disabled people with limited dexterity and voice tremors, to communicate with artificial intelligence machines.
The mechanoluminescent (ML) technology that is being developed as a new and substitutive technology for structural health monitoring systems (SHMS) comprises stress/strain sensing micro-/nanoparticles embedded in a suitable binder, digital imaging system, and digital image processing techniques. The potential of ML technology to reveal the fracture process zone (FPZ) that is commonly found in structural materials like concrete and to calculate the stress intensity factor (SIF) of concrete, which are crucial for SHMS, has never been done before. Therefore, the potential of ML technology to measure the length of the FPZ and to calculate the SIF has been demonstrated in this work by considering a single-edge notched bend (SENB) test of the concrete structures. The image segmentation approach based on the histogram of an ML image as well the skeletonization of an ML image have been introduced in this work to facilitate the measurement of the length of ML pattern, crack, and FPZ. The results show ML technology has the potential to determine fracture toughness, to visualize FPZ and cracks, and to measure their lengths in structural material like concrete, which makes it applicable to structural health monitoring systems (SHMS) to characterize the structural integrity of structures.
The compatibility of mechanoluminescent (ML) skin with the digital image correlation (DIC) algorithm under UV exposure is leveraged to quantify the ML effects in terms of effective strain. The calibration can be executed using the same photographic image. Interestingly, a linear correlation exists despite the plastic flow in ML skin. The quantification extends the ML application from visualizing strain concentration zones to quantitative measurement. More details can be found in article number 2105889 by Suman Timilsina, Ji Sik Kim, and co-workers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.