2-Oxoglutarate and iron dependent oxygenases are therapeutic targets for human diseases. Using a representative 2OG oxygenase panel, we compare the inhibitory activities of 5-carboxy-8-hydroxyquinoline (IOX1) and 4-carboxy-8-hydroxyquinoline (4C8HQ) with that of two other commonly used 2OG oxygenase inhibitors, -oxalylglycine (NOG) and 2,4-pyridinedicarboxylic acid (2,4-PDCA). The results reveal that IOX1 has a broad spectrum of activity, as demonstrated by the inhibition of transcription factor hydroxylases, representatives of all 2OG dependent histone demethylase subfamilies, nucleic acid demethylases and γ-butyrobetaine hydroxylase. Cellular assays show that, unlike NOG and 2,4-PDCA, IOX1 is active against both cytosolic and nuclear 2OG oxygenases without ester derivatisation. Unexpectedly, crystallographic studies on these oxygenases demonstrate that IOX1, but not 4C8HQ, can cause translocation of the active site metal, revealing a rare example of protein ligand-induced metal movement.
ALKBH5 is a 2-oxoglutarate (2OG) and ferrous iron-dependent nucleic acid oxygenase (NAOX) that catalyzes the demethylation of N6-methyladenine in RNA. ALKBH5 is upregulated under hypoxia and plays a role in spermatogenesis. We describe a crystal structure of human ALKBH5 (residues 66–292) to 2.0 Å resolution. ALKBH566–292 has a double-stranded β-helix core fold as observed in other 2OG and iron-dependent oxygenase family members. The active site metal is octahedrally coordinated by an HXD…H motif (comprising residues His204, Asp206 and His266) and three water molecules. ALKBH5 shares a nucleotide recognition lid and conserved active site residues with other NAOXs. A large loop (βIV–V) in ALKBH5 occupies a similar region as the L1 loop of the fat mass and obesity-associated protein that is proposed to confer single-stranded RNA selectivity. Unexpectedly, a small molecule inhibitor, IOX3, was observed covalently attached to the side chain of Cys200 located outside of the active site. Modelling substrate into the active site based on other NAOX–nucleic acid complexes reveals conserved residues important for recognition and demethylation mechanisms. The structural insights will aid in the development of inhibitors selective for NAOXs, for use as functional probes and for therapeutic benefit.
The roles of 2-oxoglutarate (2OG)-dependent prolyl-hydroxylases in eukaryotes include collagen stabilization, hypoxia sensing, and translational regulation. The hypoxia-inducible factor (HIF) sensing system is conserved in animals, but not in other organisms. However, bioinformatics imply that 2OG-dependent prolyl-hydroxylases (PHDs) homologous to those acting as sensing components for the HIF system in animals occur in prokaryotes. We report cellular, biochemical, and crystallographic analyses revealing that Pseudomonas prolyl-hydroxylase domain containing protein (PPHD) contain a 2OG oxygenase related in structure and function to the animal PHDs. A Pseudomonas aeruginosa PPHD knockout mutant displays impaired growth in the presence of iron chelators and increased production of the virulence factor pyocyanin. We identify elongation factor Tu (EF-Tu) as a PPHD substrate, which undergoes prolyl-4-hydroxylation on its switch I loop. A crystal structure of PPHD reveals striking similarity to human PHD2 and a Chlamydomonas reinhardtii prolyl-4-hydroxylase. A crystal structure of PPHD complexed with intact EF-Tu reveals that major conformational changes occur in both PPHD and EF-Tu, including a >20-Å movement of the EF-Tu switch I loop. Comparison of the PPHD structures with those of HIF and collagen PHDs reveals conservation in substrate recognition despite diverse biological roles and origins. The observed changes will be useful in designing new types of 2OG oxygenase inhibitors based on various conformational states, rather than active site iron chelators, which make up most reported 2OG oxygenase inhibitors. Structurally informed phylogenetic analyses suggest that the role of prolylhydroxylation in human hypoxia sensing has ancient origins.T he hypoxia-inducible transcription factor (HIF) is a major regulator of the response to limited oxygen availability in humans and other animals (1-3). A hypoxia-sensing component of the HIF system is provided by 2-oxoglutarate (2OG)-dependent and Fe(II)-dependent oxygenases, which catalyze prolyl-4-hydroxylation of HIF-α subunits, a posttranslational modification that enhances binding of HIF-α to the von Hippel-Lindau protein (pVHL), so targeting HIF-α for proteasomal degradation. The HIF prolyl-hydroxylases (PHDs) belong to a subfamily of 2OG oxygenases that catalyze prolyl-hydroxylation, which also includes the collagen prolyl-3-hydroxylases (CP3Hs) and prolyl-4-hydroxylases (CP4Hs) (4). Subsequently identified prolyl-hydroxylases include the ribosomal prolyl-hydroxylases (OGFOD1 and Tpa1), which catalyze ribosomal protein 23 prolyl-3-hydroxylation in many eukaryotes, and slime-mold enzymes, which catalyze prolyl-4-hydroxylation of Skp1, a ubiquitin ligase subunit (5-9). The HIF-PHD-VHL triad is likely present in all animals, but probably not in other organisms (3). However, structurally informed bioinformatic analyses imply the presence of PHD homologs in bacteria (10, 11), including in Pseudomonas spp, suggesting PHDs may have ancient origins. ResultsPseudomonas spp. Cont...
Ethylene is important in industry and biological signaling. In plants, ethylene is produced by oxidation of 1-aminocyclopropane-1-carboxylic acid, as catalyzed by 1-aminocyclopropane-1-carboxylic acid oxidase. Bacteria catalyze ethylene production, but via the fourelectron oxidation of 2-oxoglutarate to give ethylene in an argininedependent reaction. Crystallographic and biochemical studies on the Pseudomonas syringae ethylene-forming enzyme reveal a branched mechanism. In one branch, an apparently typical 2-oxoglutarate oxygenase reaction to give succinate, carbon dioxide, and sometimes pyrroline-5-carboxylate occurs. Alternatively, Grob-type oxidative fragmentation of a 2-oxoglutarate-derived intermediate occurs to give ethylene and carbon dioxide. Crystallographic and quantum chemical studies reveal that fragmentation to give ethylene is promoted by binding of L-arginine in a nonoxidized conformation and of 2-oxoglutarate in an unprecedented high-energy conformation that favors ethylene, relative to succinate formation.ethylene-forming enzyme | 2-oxoglutarate-dependent oxygenases | hydroxylase | plant development | oxidoreductase E thylene is of industrial importance and is a vital signaling molecule in plants, where it has roles in germination, senescence, and stress responses (1). Commercial manipulation of the natural ethylene response is agriculturally important in controlling fruit ripening (2). In higher plants, ethylene is produced from methionine, via oxidation of 1-aminocyclopropane-1-carboxylic acid (ACC) in an unusual reaction catalyzed by the Fe(II)-dependent ACC oxidase (ACCO) (3, 4), which is part of the 2-oxoglutarate (2OG)-dependent oxygenase superfamily, although it does not use a 2OG cosubstrate (Fig. 1A) (5-7). Ethylene is also produced in some microorganisms by oxidation of 2-oxo-4-methylthiobutyric acid in a reaction not directly enzyme catalyzed (8,9).In work aimed at producing industrial ethylene by biocatalysis, Pseudomonas strains, including plant pathogens, were shown to produce large amounts of ethylene (10)(11)(12)(13)(14). Bacteria engineered to produce ethylene using the Pseudomonas syringae pv. phaseolicola ethylene-forming enzyme (PsEFE) have been developed to ripen fruit as an alternative to the use of synthetic ethylene (15, 16). Ethylene-forming enzymes are being explored for biocatalysis in cyanobacteria (17-19). PsEFE-catalyzed ethylene production is 2OG-dependent and is stimulated by the addition of L-arginine (L-Arg), which is also converted by PsEFE into pyrroline-5-carboxylate (P5C; Fig. 1B) (13, 20). In contrast to the consensus 2OG oxygenase mechanism, which involves sequential binding of 2OG, substrate, and then oxygen, an unprecedented "dual circuit" mechanism is proposed for PsEFE (13).We describe biochemical, structural, and modeling studies supporting a branched mechanistic pathway for PsEFE that can lead either to ethylene via oxidative fragmentation of 2OG or to succinate via a more typical 2OG oxygenase reaction, which sometimes results in P5C formation (Fig....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.