Quantum chemical molecular modeling has become a standard tool in organometallic chemistry. In particular, density functional theory calculations are now indispensable for investigating the mechanism of even complex reactions and deliver precise energies of intermediates and transition states. Because software packages have become user-friendly and are widely available, even nonexperts can now produce highquality computer models. In this tutorial, we highlight nontrivial mistakes, misconceptions, and misinterpretations often encountered when producing models of a chemical reaction that can lead to wrong conclusions. The reasons for these errors are conceptually explained in simple terms, and remedies are offered.
The WxTaTiVCr high-entropy alloy with 32at.% of tungsten (W) and its derivative alloys with 42 to 90at.% of W with in-situ TiC were prepared via the mixing of elemental W, Ta, Ti, V and Cr powders followed by spark plasma sintering for the development of reduced-activation alloys for fusion plasma-facing materials. Characterization of the sintered samples revealed a BCC lattice and a multi-phase structure. The selected-area diffraction patterns confirmed the formation of TiC in the high-entropy alloy and its derivative alloys. It revealed the development of C15 (cubic) Laves phases as well in alloys with 71 to 90at.% W. A mechanical examination of the samples revealed a more than twofold improvement in the hardness and strength due to solid-solution strengthening and dispersion strengthening. This study explored the potential of powder metallurgy processing for the fabrication of a high-entropy alloy and other derived compositions with enhanced hardness and strength.
Recently, PtM (M = Fe, Ni, Co, Cu, etc.) intermetallic compounds have been highlighted as promising candidates for oxygen reduction reaction (ORR) catalysts. In general, to form those intermetallic compounds, alloy phase nanoparticles are synthesized and then heat-treated at a high temperature. However, nanoparticles easily agglomerate during the heat treatment, resulting in a decrease in electrochemical surface area (ECSA). In this study, we synthesized Pt-Fe alloy nanoparticles and employed carbon coating to protect the nanoparticles from agglomeration during heat treatment. As a result, PtFe L1 structure was obtained without agglomeration of the nanoparticles; the ECSA of Pt-Fe alloy and intermetallic PtFe/C was 37.6 and 33.3 m g, respectively. PtFe/C exhibited excellent mass activity (0.454 A mg) and stability with superior resistances to nanoparticle agglomeration and iron leaching. Density functional theory (DFT) calculation revealed that, owing to the higher dissolution potential of Fe atoms on the PtFe surface than those on the Pt-Fe alloy, PtFe/C had better stability than Pt-Fe/C. A single cell fabricated with PtFe/C showed higher initial performance and superior durability, compared to that with commercial Pt/C. We suggest that PtM chemically ordered electrocatalysts are excellent candidates that may become the most active and durable ORR catalysts available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.