We investigate how the entanglement properties of a two-mode state can be improved by performing a coherent superposition operation tâ + râ † of photon subtraction and addition, proposed by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of entanglement, the EPR-type correlation, and the performance of quantum teleportation can be all enhanced for the output state when the coherent operation is applied to a two-mode squeezed state. The effects of the coherent operation are more prominent than those of the mere photon subtraction a and the additionâ † particularly in the small squeezing regime, whereas the optimal operation becomes the photon subtraction (case of r = 0) in the large-squeezing regime.
In this paper, a human action recognition method using a hybrid neural network is presented. The method consists of three stages: preprocessing, feature extraction, and pattern classification. For feature extraction, we propose a modified convolutional neural network (CNN) which has a three-dimensional receptive field. The CNN generates a set of feature maps from the action descriptors which are derived from a spatiotemporal volume. A weighted fuzzy min-max (WFMM) neural network is used for the pattern classification stage. We introduce a feature selection technique using the WFMM model to reduce the dimensionality of the feature space. Two kinds of relevance factors between features and pattern classes are defined to analyze the salient features.* This research is supported by the ubiquitous computing and network project, the Ministry of Information and Communication 21 st century frontier R&D program in Korea.
A deterministic quantum amplifier inevitably adds noise to an amplified signal due to the uncertainty principle in quantum physics. We here investigate how a quantum-noise-limited amplifier can be improved by additionally employing the photon subtraction, the photon addition, and a coherent superposition of the two, thereby making a probabilistic, heralded, quantum amplifier. We show that these operations can enhance the performance in amplifying a coherent state in terms of intensity gain, fidelity, and phase uncertainty. In particular, the photon subtraction turns out to be optimal for the fidelity and the phase concentration among these elementary operations, while the photon addition also provides a significant reduction in the phase uncertainty with the largest gain effect.
We study a four-level double-⌳ atomic configuration working as a two photon linear amplifier where two atomic transitions independently interact with cavity mode, while the other transitions are driven by a strong pump field. It is found that our system always works as a phase sensitive linear amplifier with no window for a phase insensitive linear amplifier. We also investigate that the system behaves as a two-photon correlatedemission laser under certain conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.