Various sources contribute to mask haze formation including: chemical residuals from mask cleaning, out-gassing from pellicle glue/materials, and contaminants from the scanner ambient. This joint work examines cleaning techniques for haze minimization and whether or not there is haze formation after continuous laser irradiation. Masks with various designs and different cleaning techniques were tested in an ideal environment, isolated from out-gassing or other possible contaminants from the fab environment. Masks with and without patterns were subjected to 40kJ, accumulated dose, of laser radiation to simulate a wafer fab environment. Ion Chromatography (IC) and other surface analytical techniques were used to check the surface condition of masks before and after laser exposure. No haze was found on masks through transmission and IC measurements, when the test chamber was N 2 purged. This may suggest that new cleaning techniques have helped reduce chemical residuals on masks. It is less likely for haze to grow when masks are clean to an ionic level and when laser exposure occurs in an uncontaminated, purged environment.
The method of packing conventional proppant into fractures is used to maintain high liquid permeability. In this study, by coating a hydrophobic material on the surface of a proppant, the layer packed with this coated proppant was endowed with water-plugging and oil-permeability capacities. Moreover, several research experiments were carried out to verify the proposed method: a water plugging capacity (WPC) test of the coated proppant layer, compression and temperature resistance tests of the coated proppant (temperature range from 90 to 210 °C; pressure range from 5.9 to 91.4 MPa), and a 3D test of the oil recovery enhancement. The results show that the proppant coating has good compression resistance, and the proppant begins to break at 27.3 MPa. The upper limit of the temperature resistance of the coating is 170 °C. The WPC of the layer packed with coated proppant was still reliable during fracture, which was enhanced by at least 20% compared with that of the layer packed with a conventional proppant. The fracture packed with the coated proppant had superior working performance compared with that packed with a conventional proppant. It can reduce the flow capacity of the water phase breaking into the dominant flow passage so as to delay the rise in the water production of the oil well and prolong the duration of oil production. In this way, oil recovery could be increased by about 7.7%. In conclusion, the technology proposed in this paper has particular water-plugging and oil-permeating characteristics, with remarkable technical advantages, thus providing a new idea for the development of water control in fracture reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.