Designing and deploying a network protocol determines the rules by which end users interact with each other and with the network. We consider the problem of designing a protocol to optimize the equilibrium behavior of a network with selfish users. We consider network costsharing games, where the set of Nash equilibria depends fundamentally on the choice of an edge cost-sharing protocol. Previous research focused on the Shapley protocol, in which the cost of each edge is shared equally among its users.We systematically study the design of optimal cost-sharing protocols for undirected and directed graphs, single-sink and multicommodity networks, and different measures of the inefficiency of equilibria. Our primary technical tool is a precise characterization of the cost-sharing protocols that only induce network games with pure-strategy Nash equilibria. We use this characterization to prove, among other results, that the Shapley protocol is optimal in directed graphs, and that simple priority protocols are essentially optimal in undirected graphs.
We describe a computational model for studying the complexity of self-assembled structures with active molecular components. Our model captures notions of growth and movement ubiquitous in biological systems. The model is inspired by biology's fantastic ability to assemble biomolecules that form systems with complicated structure and dynamics, from molecular motors that walk on rigid tracks and proteins that dynamically alter the structure of the cell during mitosis, to embryonic development where large-scale complicated organisms efficiently grow from a single cell. Using this active self-assembly model, we show how to efficiently self-assemble shapes and patterns from simple monomers. For example, we show how to grow a line of monomers in time and number of monomer states that is merely logarithmic in the length of the line.Our main results show how to grow arbitrary connected two-dimensional geometric shapes and patterns in expected time that is polylogarithmic in the size of the shape, plus roughly the time required to run a Turing machine deciding whether or not a given pixel is in the shape. We do this while keeping the number of monomer types logarithmic in shape size, plus those monomers required by the Kolmogorov complexity of the shape or pattern. This work thus highlights the efficiency advantages of active self-assembly over passive self-assembly and motivates experimental effort to construct general-purpose active molecular self-assembly systems.
Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution. CRNs are widely used to describe information processing occurring in natural cellular regulatory networks, and with upcoming advances in synthetic biology, CRNs are a promising language for the design of artificial molecular control circuitry. Nonetheless, despite the widespread use of CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not well understood. CRNs have been shown to be efficiently Turing-universal (i.e., able to simulate arbitrary algorithms) when allowing for a small probability of error. CRNs that are guaranteed to converge on a correct answer, on the other hand, have been shown to decide only the semilinear predicates (a multi-dimensional generalization of “eventually periodic” sets). We introduce the notion of function, rather than predicate, computation by representing the output of a function f : ℕk → ℕl by a count of some molecular species, i.e., if the CRN starts with x1, …, xk molecules of some “input” species X1, …, Xk, the CRN is guaranteed to converge to having f(x1, …, xk) molecules of the “output” species Y1, …, Yl. We show that a function f : ℕk → ℕl is deterministically computed by a CRN if and only if its graph {(x, y) ∈ ℕk × ℕl ∣ f(x) = y} is a semilinear set. Finally, we show that each semilinear function f (a function whose graph is a semilinear set) can be computed by a CRN on input x in expected time O(polylog ∥x∥1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.