We have shown previously that raising extracellular Ca2+ inhibited the apical 70-pS K channel in the thick ascending limb (TAL; Wang, W.H., M. Lu, and S.C. Hebert. 1996. Am. J. Physiol. 270:C103–C111). We now used the patch-clamp technique to study the effect of increasing the extracellular Ca2+ on the 70-pS K channel in the mTAL from rats on a different K diet. Increasing the extracellular Ca2+ from 10 μM to 0.5, 1, and to 1.5 mM in the mTAL from rats on a K-deficient (KD) diet inhibited the channel activity by 30, 65, and 90%, respectively. In contrast, raising the extracellular Ca2+ to 1.5 mM had no significant effect on channel activity in the mTAL from animals on a high K (HK) diet and further increasing the extracellular Ca2+ to 2.5, 3.5, and 5.5 mM decreased the channel activity by 29, 55, and 90%, respectively. Inhibition of the cytochrome P450 monooxygenase completely abolished the effect of the extracellular Ca2+ on channel activity in the mTAL from rats on a different K diet. In contrast, blocking cyclooxygenase did not significantly alter the responsiveness of the 70-pS K channel to the extracellular Ca2+. Moreover, addition of sodium nitropruside, a nitric oxide (NO) donor, not only increased the channel activity, but also blunted the inhibitory effect of the extracellular Ca2+ on the 70-pS K channel and decreased 20-hydroxyeicosatetraenoic acid (20-HETE) concentration in the mTAL from rats on a KD diet. In contrast, inhibiting NOS with L-NAME enhanced the inhibitory effect of the extracellular Ca2+ on the channel activity and increased 20-HETE concentration in the mTAL from rats on a high K diet. Western blot has further shown that the expression of inducible NO synthase (iNOS) is significantly higher in the renal medulla from rats on an HK diet than that on a KD diet. Also, addition of S-nitroso-N-acetylpenicillamine abolished the inhibitory effect of arachidonic acid on channel activity in the mTAL, whereas it did not block the inhibitory effect of 20-HETE. We conclude that a low dietary K intake increases the sensitivity of the 70-pS K channel to the extracellular Ca2+, and that a decrease in NOS activity is involved in enhancing the inhibitory effect of the extracellular Ca2+ on channel activity in the mTAL during K depletion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.