High‐dose methotrexate (>0.5 g/m2) is among the first‐line chemotherapeutic agents used in treating acute lymphoblastic leukemia (ALL) and osteosarcoma in children. Despite rapid hydration, leucovorin rescue, and routine therapeutic drug monitoring, severe toxicity is not uncommon. This study aimed at developing population pharmacokinetic (popPK) models of high‐dose methotrexate for ALL and osteosarcoma and demonstrating the possibility and convenience of popPK model–based individual dose optimization using R and shiny, which is more accessible, efficient, and clinician‐friendly than NONMEM. The final data set consists of 36 ALL (354 observations) and 16 osteosarcoma (585 observations) patients. Covariate model building and parameter estimations were done using NONMEM and Perl‐speaks‐NONMEM. Diagnostic Plots and bootstrapping validated the models’ performance and stability. The dose optimizer developed based on the validated models can obtain identical individual parameter estimates as NONMEM. Compared to calling a NONMEM execution and reading its output, estimating individual parameters within R reduces the execution time from 8.7‐12.8 seconds to 0.4‐1.0 second. For each subject, the dose optimizer can recommend (1) an individualized optimal dose and (2) an individualized range of doses. For osteosarcoma, recommended optimal doses by the optimizer resemble the final doses at which the subjects were eventually stabilized. The dose optimizers developed demonstrated the potential to inform dose adjustments using a model‐based, convenient, and efficient tool for high‐dose methotrexate. Although the dose optimizer is not meant to replace clinical judgment, it provides the clinician with the individual pharmacokinetics perspective by recommending the (range of) optimal dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.