The development of computing technology provides more and more methods for human-computer interaction applications. The gesture or motion of a human hand is considered as one of the most basic communications for interacting between people and computers. Recently, the release of 3D cameras such as Microsoft Kinect and Leap Motion has provided many advantage tools to explore computer vision and virtual reality based on RGB-Depth images. The paper focuses on improving approach for detecting, training, and recognizing the state sequences of hand motions automatically. The hand movements of three persons are recorded as the input of a recognition system. These hand movements correspond to five actions: sweeping right to left, sweeping top to bottom, circle motion, square motion, and triangle motion. The skeletal data of hand joint are collected to build an observation database. Desired features of each hand action are extracted from skeleton video frames by using the Principle Component Analysis (PCA) algorithm for training and recognition. A hidden Markov model (HMM) is applied to train the feature data and recognize various states of hand movements. The experimental results showed that the proposed method achieved the average accuracy nearly 95.66% and 91.00% for offline and online recognition, respectively.
Bài báo này nghiên cứu hiệu năng của kỹ thuật đa truy cập không trực giao (Non-Orthogonal Multiple Access – NOMA) trong thông tin vô tuyến. Đây là kỹ thuật được ứng dụng hiệu quả trong mạng 5G và hứa hẹn sẽ là ứng viên tiềm năng được sử dụng trong mạng 6G. Trong bài báo này, hiệu năng của NOMA được đánh giá qua giá trị tỉ lệ lỗi bit (Bit Error Rate – BER), tốc độ dữ liệu và xác suất dừng (Outage Probability – OP). Các giá trị này thu được thông qua mô phỏng hệ thống NOMA qua kênh truyền Rayleigh có chịu ảnh hưởng của nhiễu AWGN (Additive white Gaussian noise) ở cả hai trường hợp SIC (Successive Interference Cancellation) hoàn hảo và SIC không hoàn hảo. Nhìn chung, công suất phát càng tăng thì giá trị tốc độ dữ liệu sẽ càng cao đồng thời giá trị BER và OP sẽ được cải thiện đáng kể. Hơn nữa, kết quả phân tích cho thấy mô hình hệ thống NOMA cung cấp một nền tảng tốt phục vụ việc phát triển các kỹ thuật góp phần cải thiện chất lượng dịch vụ cho các hệ thống truyền thông dựa trên NOMA trong tương lai.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.