BackgroundElectrooculogram (EOG) can be used to continuously track eye movements and can thus be considered as an alternative to conventional camera-based eye trackers. Although many EOG-based eye tracking systems have been studied with the ultimate goal of providing a new way of communication for individuals with amyotrophic lateral sclerosis (ALS), most of them were tested with healthy people only. In this paper, we investigated the feasibility of EOG-based eye-writing as a new mode of communication for individuals with ALS.MethodsWe developed an EOG-based eye-writing system and tested this system with 18 healthy participants and three participants with ALS. We also applied a new method for removing crosstalk between horizontal and vertical EOG components. All study participants were asked to eye-write specially designed patterns of 10 Arabic numbers three times after a short practice session.ResultsOur system achieved a mean recognition rates of 95.93% for healthy participants and showed recognition rates of 95.00%, 66.67%, and 93.33% for the three participants with ALS. The low recognition rates in one of the participants with ALS was mainly due to miswritten letters, the number of which decreased as the experiment proceeded.ConclusionOur proposed eye-writing system is a feasible human-computer interface (HCI) tool for enabling practical communication of individuals with ALS.
He has authored more than 160 articles in peer-reviewed international journals. His current research interests include neuroelectromagnetics and computational neuroengineering, especially brain-computer interfaces, diagnosis of neuropsychiatric diseases, noninvasive brain stimulation, and dynamic neuroimaging.
Patients in a locked-in state (LIS) due to severe neurological disorders such as amyotrophic lateral sclerosis (ALS) require seamless emergency care by their caregivers or guardians. However, it is a difficult job for the guardians to continuously monitor the patients' state, especially when direct communication is not possible. In the present study, we developed an emergency call system for such patients using a steady-state visual evoked potential (SSVEP)-based brain switch. Although there have been previous studies to implement SSVEP-based brain switch system, they have not been applied to patients in LIS, and thus their clinical value has not been validated. In this study, we verified whether the SSVEP-based brain switch system can be practically used as an emergency call system for patients in LIS. The brain switch used for our system adopted a chromatic visual stimulus, which proved to be visually less stimulating than conventional checkerboard-type stimuli but could generate SSVEP responses strong enough to be used for brain-computer interface (BCI) applications. To verify the feasibility of our emergency call system, 14 healthy participants and 3 patients with severe ALS took part in online experiments. All three ALS patients successfully called their guardians to their bedsides in about 6.56 seconds. Furthermore, additional experiments with one of these patients demonstrated that our emergency call system maintains fairly good performance even up to 4 weeks after the first experiment without renewing initial calibration data. Our results suggest that our SSVEP-based emergency call system might be successfully used in practical scenarios.
Although the feasibility of brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) has been extensively investigated, only a few studies have evaluated its clinical feasibility in patients with locked-in syndrome (LIS), who are the main targets of BCI technology. The main objective of this case report was to share our experiences of SSVEP-based BCI experiments involving five patients with LIS, thereby providing researchers with useful information that can potentially help them to design BCI experiments for patients with LIS. In our experiments, a four-class online SSVEP-based BCI system was implemented and applied to four of five patients repeatedly on multiple days to investigate its test-retest reliability. In the last experiments with two of the four patients, the practical usability of our BCI system was tested using a questionnaire survey. All five patients showed clear and distinct SSVEP responses at all four fundamental stimulation frequencies (6, 6.66, 7.5, 10 Hz), and responses at harmonic frequencies were also observed in three patients. Mean classification accuracy was 76.99% (chance level = 25%). The test-retest reliability experiments demonstrated stable performance of our BCI system over different days even when the initial experimental settings (e.g., electrode configuration, fixation time, visual angle) used in the first experiment were used without significant modifications. Our results suggest that SSVEP-based BCI paradigms might be successfully used to implement clinically feasible BCI systems for severely paralyzed patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.