BackgroundVaricella-zoster virus (VZV) causes chickenpox in children and shingles in older people. Currently, live attenuated vaccines based on the Oka strain are available worldwide. In Korea, an attenuated VZV vaccine has been developed from a Korean isolate and has been commercially available since 1994. Despite this long history of use, the mechanism for the attenuation of the vaccine strain is still elusive. We attempted to understand the molecular basis of attenuation mechanism by full genome sequencing and comparative genomic analyses of the Korean vaccine strain SuduVax.ResultsSuduVax was found to contain a genome that was 124,759 bp and possessed 74 open reading frames (ORFs). SuduVax was genetically most close to Oka strains and these Korean-Japanese strains formed a strong clade in phylogenetic trees. SuduVax, similar to the Oka vaccine strains, underwent T- > C substitution at the stop codon of ORF0, resulting in a read-through mutation to code for an extended form of ORF0 protein. SuduVax also shared certain deletion and insertion mutations in ORFs 17, 29, 56 and 60 with Oka vaccine strains and some clinical strains.ConclusionsThe Korean VZV vaccine strain SuduVax is genetically similar to the Oka vaccine strains. Further comparative genomic and bioinformatics analyses will help to elucidate the molecular basis of the attenuation of the VZV vaccine strains.
Most (90.2%) Korean adults ≥40-years-of-age have a protective level of gpEIA antibody against varicella and 98.6% were FAMA seropositive. The GMT of gpEIA antibody was significantly increased with age, and was higher in adults with a history of HZ.
The regulation mechanism of interferon (IFN) and IFN-stimulated genes is a very complex procedure and is dependent on cell types and virus species. We observed molecular changes related to anti-viral responses in endothelial cells during Hantaan virus (HTNV) infection. We found that there are two patterns of gene expression, the first pattern of gene expression being characterized by early induction and short action, as in that of type I IFNs,' and the other being characterized by delayed induction and long duration, as those of IRF-7, MxA, and TAP-1/2. Even though there are significant differences in their induction folds, we found that all of IFN-α/β, IRF-3/7, MxA, and TAP-1/2 mRNA expressions reached the peak when the viral replication was most active, which took place 3 days of post infection (d.p.i.). In addition, an interesting phenomenon was observed; only one gene was highly expressed in paired genes such as IFN-α/β (3/277-folds), IRF-3/7 (2.2/29.4-folds), and TAP-1/2 (26.2/6.1-folds). Therefore, IFN-β, IRF-7, and TAP-1 seem to be more important for the anti-viral response in HTNV infection. MxA was increased to 296-folds at 3 d.p.i. and kept continuing 207-folds until 7 d.p.i.. The above results indicate that IFN-β works for an early anti-viral response, while IRF7, MxA, and TAP-1 work for prolonged anti-viral response in HTNV infection.
Pirfenidone (PFD) is a newly developed anti-fibrotic agent. We evaluated the effect of PFD for the prevention of renal fibrosis using a spontaneous progressive glomerulosclerosis animal model, FGS/Kist mice. Male and female FGS/Kist mice were fed a diet containing 0.5% PFD or the same control diet (CD) without PFD, for 1, 2, or 3-month periods. Body weight was monitored for the general effect of PFD on the mice. Proteinuria and glomerular filtration rate (GFR) were evaluated for renal function. The sclerosis index was examined for the morphological changes. There were no significant changes in body weight between the PFD and control groups in both sexes. Proteinuria levels were low in all the PFD groups compared to the corresponding CD groups. The sclerosis scores were also reduced in both sexes of the 3-month PFD groups (p<0.05), and glomerular filtration rates were increased in both sexes of the 3-month PFD groups compared to the CD groups. The treatment of PFD for 1 or 2-month periods did not have statistic significances but the treatment for 3 months had statistic significances in sclerosis and GFR compared to CD groups. These results suggested that long-term administration of PFD suppressed the progression of glomerulosclerosis and improved renal function of the FGS/Kist mice.
Bone mineralization is a normal physiological process, whereas ectopic calcification of soft tissues is a pathological process that leads to irreversible tissue damage. We have established a coxsackievirus B3 (CVB3)–infected mouse model that manifests both osteoporosis and ectopic calcification specifically in heart, pancreas, and lung. The CVB3-infected mice showed increased serum concentrations of both cytokines including IL-1β, TNF-α, and the receptor activator of NF-κB ligand (RANKL) that stimulate osteoclast formation and of the osteoclast-derived protein tartrate-resistant acid phosphatase 5b. They exhibited more osteoclasts in bone, with no change in the number of osteoblasts, and a decrease in bone formation and the serum concentration of osteoblast-produced osteocalcin. These results indicate that CVB3-induced osteoporosis is likely due to upregulation of osteoclast formation and function, in addition to decreased osteoblast activity. In addition, the serum in the CVB3-infected mice contained a high inorganic phosphate content, which causes ectopic calcification. RANKL treatment induced an increase in the in vitro cardiac fibroblast calcification by inorganic phosphate via the upregulation of osteogenic BMP2, SPARC, Runx2, Fra-1, and NF-κB signaling. We finally observed that i.p. administration of RANK-Fc, a recombinant antagonist of RANKL, prevented bone loss as well as ectopic calcification in CVB3-infected mice. Thus, our results indicate that RANKL may contribute to both abnormal calcium deposition in soft tissues and calcium depletion in bone. In addition, our animal model should provide a tool for the development of new therapeutic agents for calcium disturbance in soft and hard tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.