S-N behavior has been a backbone of material fatigue life studies since the 19th century. Numerous S-N curve models have been produced but they have been arbitrarily chosen in numerous research works dominantly for composite materials. In this paper, they were critically reviewed and evaluated for capability using the following criteria: data fitting capability, efficiency of curve fitting, applicability to data sets at various stress ratios (−0.43, −1, −3, 0.1, and 10), representability of fatigue damage at failure, and satisfaction of the initial boundary condition. The S-N curve models were found to be in two categories-one for fatigue data characterization independent of stress ratio, and the other for those designed for predicting the effect of stress ratio. The models proposed by Weibull, Sendeckyj, and Kim and Zhang for fatigue data characterization appeared to have the best capabilities for experimental data obtained from Weibull for R = −1, from Sendeckyj for R = 0.1, and from Kawai and Itoh (for R = −0.43, −3, and 10). The Kim and Zhang model was found to have an advantage over the Weibull and the Sendeckyj models for representing the fatigue damage at failure. The Kohout and Vechet model was also found to have a good fitting capability but with an inherent limitation for shaping the S-N curve at some stress ratios (e.g., R = −0.43). The S-N curve models developed for predicting the effect of stress ratio were found to be relatively inferior in data fitting capability to those developed directly for fatigue data characterization.
S-N curve characterisation and prediction of remaining fatigue life are studied using polyethylene terephthalate glycol-modified (PETG). A new simple method for finding a data point at the lowest number of cycles for the Kim and Zhang S-N curve model is proposed to avoid the arbitrary choice of loading rate for tensile testing. It was demonstrated that the arbitrary choice of loading rate may likely lead to an erroneous characterisation for the prediction of the remaining fatigue life. The previously proposed theoretical method for predicting the remaining fatigue life of composite materials involving the damage function was verified at a stress ratio of 0.4 for the first time. Both high to low and low to high loadings were conducted for predicting the remaining fatigue lives and a good agreement between predictions and experimental results was found. Fatigue damage consisting of cracks and whitening is described.
The expanded perlite-based building material for drywall application consisting of sodium silicate solution as a binder was manufactured by varying the degree of compaction and sodium silicate content to investigate moisture diffusion behavior and the effect of moisture treatment on flexural properties of the composites. Moisture treatment was conducted on specimens in a climatic chamber at a temperature of 37°C and a relative humidity of 90% until saturation. Results show that moisture absorption decreased with increasing compaction ratio for a constant sodium silicate content in binder and increased with increasing sodium silicate content in binder for a constant compaction ratio. A range of volume fractions of solid sodium silicate in the foam is identified, in which the fully Fickian diffusion gradually transformed to non-Fickian diffusion as sodium silicate content in foam increased. The concentration-dependent diffusion method was found to be suitable to explain this behavior. The moisture diffusion below this transition range showed an entirely Fickian diffusion and changed to concentration-dependent diffusion above the range. As a result of moisture treatment, the flexural strength of medium density foams was decreased but the lowest- and highest-density foams were not affected while the flexural modulus was increased only for the highest density foam and no significant effects were seen in other cases. The bending failure mechanism of the composite was not affected by the moisture treatment.
A practical procedure for predicting the remaining fatigue life at an arbitrary stress ratio is developed and verified. The procedure was based on the validated damage function, in conjunction with the Kim and Zhang S-N curve model. The damage function was used for finding various iso-damage points dependent on three independent variables (i.e., stress level, number of fatigue cycles, and stress ratio). The verification was conducted using Alclad 24S-T aluminium alloy, available in the literature for fatigue loading varied under three different loading schemes. The first scheme was for two different stress ratios, the second was for three different stress ratios, and the last was for a single stress ratio as a special case. The prediction accuracies were found to be in an error range of −0.1 to 5.6%, −0.5 to −0.6, and 1.5 to 1.7% for the 1st, 2nd, and 3rd schemes, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.