MCM-22 zeolite has been widely used in many applications for catalysis and adsorption. Especially, this material exchanged with Cu+ cation (Cu(I)-MCM-22) is an active catalyst in green chemical reaction, such as decomposition of NO and N2O. The local geometry of Cu+ in vicinity of Al (III) replacement in six different Si (IV) sites and CO interaction with the most stable Cu+ in each Al site were explored using periodic density functional theory (DFT) method. The CO stretching frequencies were computed applying the ω/r scaling method in which frequencies were determined at high quantum level (couple cluster) and CO bond length calculated at DFT level. The results showed that Cu+ cation located in the channel wall position and intersection position coordinated with 3 or 2 framework oxygen atoms, respectively, before CO adsorption and Cu+ cation coordinated with 2 framework oxygen atoms after CO adsorption. The interaction energies between CO and Cu+ cation were in range - 148 to -195 kJ.mol-1 and CO frequencies exhibit two peaks at 2151 and 2159 cm-1 in good agreement with experimental data. This investigation brought us to understand the Cu+ location in MCM-22 and CO adsorption in Cu(I)-MCM-22 zeolite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.