Artemisinins are proposed to act in the malaria parasite cytosol by oxidizing dihydroflavin cofactors of redox-active flavoenzymes, and under aerobic conditions by inducing their autoxidation. Perturbation of redox homeostasis coupled with the generation of reactive oxygen species (ROS) ensues. Ascorbic acid-methylene blue (MB), N-benzyl-1,4-dihydronicotinamide (BNAH)-MB, BNAH-lumiflavine, BNAH-riboflavin (RF), and NADPH-FAD-E. coli flavin reductase (Fre) systems at pH 7.4 generate leucomethylene blue (LMB) and reduced flavins that are rapidly oxidized in situ by artemisinins. These oxidations are inhibited by the 4-aminoquinolines piperaquine (PPQ), chloroquine (CQ), and others. In contrast, the arylmethanols lumefantrine, mefloquine (MFQ), and quinine (QN) have little or no effect. Inhibition correlates with the antagonism exerted by 4-aminoquinolines on the antimalarial activities of MB, RF, and artemisinins. Lack of inhibition correlates with the additivity/synergism between the arylmethanols and artemisinins. We propose association via π complex formation between the 4-aminoquinolines and LMB or the dihydroflavins; this hinders hydride transfer from the reduced conjugates to the artemisinins. The arylmethanols have a decreased tendency to form π complexes, and so exert no effect. The parallel between chemical reactivity and antagonism or additivity/synergism draws attention to the mechanism of action of all drugs described herein. CQ and QN inhibit the formation of hemozoin in the parasite digestive vacuole (DV). The buildup of heme-Fe(III) results in an enhanced efflux from the DV into the cytosol. In addition, the lipophilic heme-Fe(III) complexes of CQ and QN that form in the DV are proposed to diffuse across the DV membrane. At the higher pH of the cytosol, the complexes decompose to liberate heme-Fe(III) . The quinoline or arylmethanol reenters the DV, and so transfers more heme-Fe(III) out of the DV. In this way, the 4-aminoquinolines and arylmethanols exert antimalarial activities by enhancing heme-Fe(III) and thence free Fe(III) concentrations in the cytosol. The iron species enter into redox cycles through reduction of Fe(III) to Fe(II) largely mediated by reduced flavin cofactors and likely also by NAD(P)H-Fre. Generation of ROS through oxidation of Fe(II) by oxygen will also result. The cytotoxicities of artemisinins are thereby reinforced by the iron. Other aspects of drug action are emphasized. In the cytosol or DV, association by π complex formation between pairs of lipophilic drugs must adversely influence the pharmacokinetics of each drug. This explains the antagonism between PPQ and MFQ, for example. The basis for the antimalarial activity of RF mirrors that of MB, wherein it participates in redox cycling that involves flavoenzymes or Fre, resulting in attrition of NAD(P)H. The generation of ROS by artemisinins and ensuing Fenton chemistry accommodate the ability of artemisinins to induce membrane damage and to affect the parasite SERCA PfATP6 Ca(2+) transporter. Thus, the effect exerted by ...
In this study, we investigated the formation mechanism and chemical structure of melanin that results from the self-assembly of L-3,4-dihydroxyphenylalanine (L-DOPA). Using a combination of "top-down" and "bottom-up" approaches, and on the basis of state-of-the-art electrospray ionization mass spectrometry (ESI-MS) results, we propose a new formation mechanism and an alternative structure for melanin. Specifically, our study of the self-aggregation of L-DOPA based on L-DOPA clusters revealed that melanin is comprised partially of noncovalent supramolecular aggregate that is formed by self-aggregation of L-DOPA and with the individual monomers linked together by a combination of hydrogen bonds, π-π stacking, and ionic bonds. Furthermore, our study showed that unmodified L-DOPA may be part of the building block for melanin in addition to the previously proposed indole derivative based on L-DOPA cyclization. A similar self-aggregation phenomenon was also observed in other structurally related catecholamines, for example, adrenaline.
Emerging evidence suggests that cross-links formed by reacting DNA lesions with proteins may play a significant role in the pathophysiology of human cancer and degenerative diseases. The goal of this study was to develop a method involving liquid chromatography-tandem mass spectrometry (LC–MS/MS) coupled with the stable isotope-dilution method to quantify DNA–protein cross-link (DPC). A novel type of cross-link involving a S-glycosidic linkage formed by reacting an abasic site in DNA with the cysteine residues in protein was targeted in this study. The method entails hydrolysis of the cross-link to a 2′-deoxyribose-cysteine adduct, addition of isotopically labeled internal standard, and quantitation by LC–MS/MS analysis. The accuracy and precision of the method were evaluated with a synthetic peptide containing the cross-link. The validated method was then applied to quantitate the levels of the DNA–protein cross-link in vitro and in HeLa cells exposed to alkylating agent methylmethanesulfonate (MMS). The analysis detected dosage-dependent formation of the cross-link in both purified DNA (6.0 ± 0.6 DPC per 106 nt μM–1 MMS) and in human cells (7.8 ± 1.2 DPC per 106 nt mM–1 MMS). With the abasic site being one of the most common DNA lesions produced continuously by multiple pathways, the results provide significant new knowledge for better understanding the potential biological implications of its associated DNA–protein cross-link.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.