We report a Fabry–Perot interferometer (FPI)-based infrared (IR) spectrometer designed for long-wavelength infrared (LWIR) region. To fabricate the proposed FPI-based LWIR spectrometer, we developed a novel poly(dimethylsiloxane) (PDMS) patterning technique by combining photolithography and dry etching. The proposed PDMS patterning technique has advantages such as clear shape of PDMS pattern and no damage to the silicon (Si) substrate. Especially, the final height of PDMS pattern is easily adjusted by controlling the thickness of spin-coated photoresist. The proposed FPI-based IR spectrometer, which is composed of upper and lower substrate were fabricated separately utilizing newly proposed PDMS patterning technique. Experimental results show that maximum transmittance of filtered wavelength component by the proposed FPI-based IR spectrometer lies at the wavelength of 16 µm. The proposed IR spectrometer can detect a specific wavelength at LWIR region by controlling the air etalon gap that is adjusted by utilizing the proposed PDMS patterning technique.
An existing infrared (IR) analysis system is generally composed of infrared source, IR focusing lenses, IR detector, and optical chopper. An optical chopper is widely used in combination with lock-in amplifier to improve the signal-to-noise ratio by periodically interrupting incident light beam. During recent years, a few researches on miniaturized optical chopper have been reported to apply to microscaled optical systems. In this paper, a micro optical chopper operated by electromagnetic actuation is proposed and applied to a miniaturized micro-scaled optical system operating in IR spectral range. Additionally, the fabrication method of the proposed micro chopper is demonstrated. The proposed micro optical chopper is composed of the polydimethylsiloxane (PDMS) membrane, solenoid, and permanent magnet. The permanent magnet is bonded on the PDMS membrane using an ultraviolet-activated adhesive. The operation of the chopper is based on the attractive and repulsive forces between permanent magnet and solenoid induced by an electrical current flowing through the solenoid. The fabricated micro optical chopper could operate up to 200 Hz of frequency. The maximum operating distance of the chopper with 7 mm diameter membrane was 750 µm at 100 Hz of frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.