Although RNA and RNA-binding proteins have been linked to double-strand breaks (DSBs), little is known regarding their roles in the cellular response to DSBs and, if any, in the repair process. Here, we provide direct evidence for the presence of RNA-DNA hybrids at DSBs and suggest that binding of RNA to DNA at DSBs may impact repair efficiency. Our data indicate that the RNAunwinding protein DEAD box 1 (DDX1) is required for efficient DSB repair and cell survival after ionizing radiation (IR), with depletion of DDX1 resulting in reduced DSB repair by homologous recombination (HR). While DDX1 is not essential for end resection, a key step in homology-directed DSB repair, DDX1 is required for maintenance of the single-stranded DNA once generated by end resection. We show that transcription deregulation has a significant effect on DSB repair by HR in DDX1-depleted cells and that RNA-DNA duplexes are elevated at DSBs in DDX1-depleted cells. Based on our combined data, we propose a role for DDX1 in resolving RNA-DNA structures that accumulate at DSBs located at sites of active transcription. Our findings point to a previously uncharacterized requirement for clearing RNA at DSBs for efficient repair by HR. DEAD box proteins are a family of putative RNA helicases that function by altering RNA secondary structure. This protein family has been implicated in all aspects of RNA metabolism. The DEAD box 1 gene (DDX1) is a widely expressed gene that is misexpressed in a number of cancers, including retinoblastoma, neuroblastoma, and breast cancer (1, 2). Knockout of DDX1 leads to early embryonic lethality in mice and severely reduced fertility in flies (3, 4). DDX1 is involved in the transport of RNAs from the nucleus to the cytoplasm and regulates cytoplasmic localization of the splicing-regulatory protein KSRP (5). In neurons, DDX1 resides in RNA-transporting granules, cytoplasmic organelles that regulate the localization and expression of target mRNAs (6, 7). DDX1 has also been identified as a core subunit of the human tRNA ligase complex which is essential for tRNA splicing (8).In addition to its roles in RNA metabolism, DDX1 has been implicated in the cellular response to DNA double-strand breaks (DSBs). Upon treatment of cells with ionizing radiation (IR), DDX1 rapidly accumulates at a subset of DNA DSBs (ϳ30%), where it forms IR-induced foci that colocalize with ␥-H2AX, a marker for DSBs (9). DDX1 coimmunoprecipitates with the MRN (MRE11-RAD50-NBS1) complex, the early sensor of DNA DSBs, and ATM (ataxia telangiectasia mutated) protein, the key transducer of the signaling cascade in response to DSBs (10, 11). DSBs induce DDX1 phosphorylation in an ATM-dependent manner. Notably, IR-induced DDX1 foci are lost when cells are treated with RNase H, an enzyme that specifically digests RNA from RNA-DNA hybrids (9). These results suggest that RNA-DNA double-stranded structures are required for the presence and/or retention of DDX1 at DSBs. In line with this observation, biochemical analysis has shown that DDX1 can unwind both...
Edited by Xiao-Fan Wang Malignant glioma (MG) is the most lethal primary brain tumor. In addition to having inherent resistance to radiation treatment and chemotherapy, MG cells are highly infiltrative, rendering focal therapies ineffective. Genes involved in MG cell migration and glial cell differentiation are up-regulated by hypophosphorylated nuclear factor I (NFI), which is dephosphorylated by the phosphatase calcineurin in MG cells. Calcineurin is cleaved and thereby activated by calpain proteases, which are, in turn, inhibited by calpastatin (CAST). Here, we show that the CAST gene is a target of NFI and has NFI-binding sites in its intron 3 region. We also found that NFI-mediated regulation of CAST depends on NFI's phosphorylation state. We noted that occupation of CAST intron 3 by hypophosphorylated NFI results in increased activation of an alternative promoter. This activation resulted in higher levels of CAST transcript variants, leading to increased levels of CAST protein that lacks the N-terminal XL domain. CAST was primarily present in the cytoplasm of NFI-hypophosphorylated MG cells, with a predominantly perinuclear immunostaining pattern. NFI knockdown in NFI-hypophosphorylated MG cells increased CAST levels at the plasma membrane. These results suggest that NFI plays an integral role in the regulation of CAST variants and CAST subcellular distribution. Along with the previous findings indicating that NFI activity is regulated by calcineurin, these results provide a foundation for further investigations into the possibility of regulatory cross-talk between NFI and the CAST/calpain/calcineurin signaling pathway in MG cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.