Objectives: Smart hospitals involve the application of recent information and communications technology (ICT) innovations to medical services; however, the concept of a smart hospital has not been rigorously defined. In this study, we aimed to derive the definition and service types of smart hospitals and investigate cases of each type. Methods: A literature review was conducted regarding the background and technical characteristics of smart hospitals. On this basis, we conducted a focus group interview with experts in hospital information systems, and ultimately derived eight smart hospital service types.Results: Smart hospital services can be classified into the following types: services based on location recognition and tracking technology that measures and monitors the location information of an object based on short-range communication technology; high-speed communication network-based services based on new wireless communication technology; Internet of Things-based services that connect objects embedded with sensors and communication functions to the internet; mobile health services such as mobile phones, tablets, and wearables; artificial intelligence-based services for the diagnosis and prediction of diseases; robot services provided on behalf of humans in various medical fields; extended reality services that apply hyper-realistic immersive technology to medical practice; and telehealth using ICT. Conclusions: Smart hospitals can influence health and medical policies and create new medical value by defining and quantitatively measuring detailed indicators based on data collected from existing hospitals. Simultaneously, appropriate government incentives, consolidated interdisciplinary research, and active participation by industry are required to foster and facilitate smart hospitals.
Background Falls in acute care settings threaten patients’ safety. Researchers have been developing fall risk prediction models and exploring risk factors to provide evidence-based fall prevention practices; however, such efforts are hindered by insufficient samples, limited covariates, and a lack of standardized methodologies that aid study replication. Objective The objectives of this study were to (1) convert fall-related electronic health record data into the standardized Observational Medical Outcome Partnership's (OMOP) common data model format and (2) develop models that predict fall risk during 2 time periods. Methods As a pilot feasibility test, we converted fall-related electronic health record data (nursing notes, fall risk assessment sheet, patient acuity assessment sheet, and clinical observation sheet) into standardized OMOP common data model format using an extraction, transformation, and load process. We developed fall risk prediction models for 2 time periods (within 7 days of admission and during the entire hospital stay) using 2 algorithms (least absolute shrinkage and selection operator logistic regression and random forest). Results In total, 6277 nursing statements, 747,049,486 clinical observation sheet records, 1,554,775 fall risk scores, and 5,685,011 patient acuity scores were converted into OMOP common data model format. All our models (area under the receiver operating characteristic curve 0.692-0.726) performed better than the Hendrich II Fall Risk Model. Patient acuity score, fall history, age ≥60 years, movement disorder, and central nervous system agents were the most important predictors in the logistic regression models. Conclusions To enhance model performance further, we are currently converting all nursing records into the OMOP common data model data format, which will then be included in the models. Thus, in the near future, the performance of fall risk prediction models could be improved through the application of abundant nursing records and external validation.
BACKGROUND Although electronic health record (EHR) system adoption rate has reached 96% in US, implementation and usage of health information exchange (HIE) is still lagging behind. Blockchain is in the spotlight as a technology to solve the problem. However, there have been no studies on different perspectives of stakeholders regarding blockchain based patient-centered HIE. OBJECTIVE The objective of this study was to analyze the awareness among patients, healthcare professionals, and IT developers towards blockchain-based HIE and compare their different perspectives on the platform based upon qualitative research methodology. METHODS In this qualitative study, we applied grounded theory and the Promoting Action on Research Implementation in the Health Service (PARiHS) framework. We interviewed patients, physicians, and developers consist of seven participants respectively, for a total of 21 interviewees. RESULTS Regarding the leakage of health information, the patient group did not have concerns unlike physician and developer groups. Physicians were especially concerned about the fact that errors in the data cannot be easily fixed due to the nature of blockchain technology. Patients were not against idea of providing information for clinical trial or research institutions. They wished to be provided with the results of clinical research rather than the compensation for providing the data. The developers emphasized that the blockchain must be technically mature before it can be applied to the healthcare scene, and standards of medical information to be exchanged must be established first. The three groups' perceptions of blockchain were generally positive. CONCLUSIONS The result of the study will be the grounds for developing a blockchain platform which can be utilized in the actual healthcare environment.
BACKGROUND Patient-generated health data (PGHD), especially lifelog data, are important for managing chronic diseases. Additionally, personal health records (PHRs) have been considered an effective tool to engage patients more actively in the management of their chronic diseases. However, no PHRs currently integrate PGHD directly from Samsung S-Health and Apple Health apps. OBJECTIVE The purposes of this study were (1) to demonstrate the development of an electronic medical record (EMR)–tethered PHR system (Health4U) that integrates lifelog data from Samsung S-Health and Apple Health apps and (2) to explore the factors associated with the use rate of the functions. METHODS To upgrade conventional EMR-tethered PHRs, a task-force team (TFT) defined the functions necessary for users. After implementing a new system, we enrolled adults aged 19 years and older with prior experience of accessing Health4U in the 7-month period after November 2017, when the service was upgraded. RESULTS Of the 17,624 users, 215 (1.22%) integrated daily steps data, 175 (0.99%) integrated weight data, 51 (0.29%) integrated blood sugar data, and 90 (0.51%) integrated blood pressure data. Overall, 61.95% (10,919/17,624) had one or more chronic diseases. For integration of daily steps data, 48.3% (104/215) of patients used the Apple Health app, 43.3% (93/215) used the S-Health app, and 8.4% (18/215) entered data manually. To retrieve medical documentation, 324 (1.84%) users downloaded PDF files and 31 (0.18%) users integrated their medical records into the Samsung S-Health app via the Consolidated-Clinical Document Architecture download function. We found a consistent increase in the odds ratios for PDF downloads among patients with a higher number of chronic diseases. The age groups of ≥60 years and ≥80 years tended to use the download function less frequently than the others. CONCLUSIONS This is the first study to examine the factors related to integration of lifelog data from Samsung S-Health and Apple Health apps into EMR-tethered PHRs and factors related to the retrieval of medical documents from PHRs. Our findings on the lifelog data integration can be used to design PHRs as a platform to integrate lifelog data in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.